QP Code: RD17001075	Reg.						AR 17
	No						

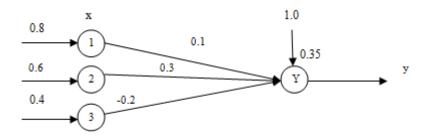
GIET MAIN CAMPUS AUTONOMOUS GUNUPUR – 765022

B. Tech Degree Examinations, December – 2020

(Seventh Semester)

BELPE 7031 / BEEPE 7031 - NEURAL NETWORKS & FUZZY LOGIC

(EE and EEE)


Time: 2 hrs Maximum: 50 Marks

The figures in the right hand margin indicate marks.									
PART – A: (Multiple Choice Questions) (1 x 1					0 = 10 Marks)				
<u>Q.1.</u> a.	Synap	er ALL questions oses in biological neuron ar	e analogo	us to in art	ificial	[CO#] CO1	[PO#] PO3		
	neuro								
	(i)	Input	` ′	Output					
L	(iii)	Weight	(1V)	Summation		CO1	DO2		
b.		ing refers to	(::\ <u>)</u>	Updation of weights		CO1	PO3		
	(i)	Updation of input	` ′						
0	(iii)	Updation of target	(iv)	CO2	PO4				
c.		nathematical basis for the bactivation functions		•	CO2	PO4			
	(i)		(ii)						
d.	(iii)	Newton Raphson network in which the outp	(iv)		alf as	CO2	PO4		
u.		•	out of a fi	euron is ieu dack into its	en as	CO2	104		
	input		(;;)	Pools propagation					
	(i)	Recurrent network Reinforcement	(ii) (iv)	Back propagation Reverse network					
۵	(iii)		` ′		innut	CO3	PO4		
C.	e. There are several versions of the discrete Hopfield net. The type of input vectors described by Hopfield initially is								
	(i)	Discrete samples	iiiaiiy is (ii)	Bipolar					
	(iii)	Binary	(iv)	•					
f.	` ′	sp refers to (0,1) then fuzzy	` ′	raucins		CO4	PO3		
1.	(i)	Between 0 to 1	(ii)	Between 0 to -1		C04	103		
	(iii)	(1,0)	(iv)	(-1,+1)					
Œ	` ′	fication is carried out by	(1V)	(-1,+1)		CO4	PO3		
g.	(i)	Inferencing	(ii)	Pointers		C04	103		
	(iii)	Aggregators	(iv)						
h.	` ′	A, the strategy to ensure that	` '	-	in the	CO4	PO3		
11.		h process through generation		emomosomes are not iost	III uic	CO4	103		
	(i)	Elitism	(ii)	Tabu search					
	(iii)	Selection	` ′	Convergence					
i.	` '	ed is high then apply brake	` '	· ·		CO5	PO4		
1.	(i)	Antecedent	(ii)	Consequent		003	104		
	(iii)	Self organizing	(iv)	<u>*</u>					
j.	` ′	S refers to	(14)	micrenenig		CO5	PO4		
J.	(i)		zzy (ii)	Artificial neural and	fuzzv	202	101		
	(1)	inference system	<i>LLy</i> (11)	inference system	IULLY				
	(iii)	Aggregation neural fuzz	zy (iv)	· ·	fuzzv				
	(111)	1166106ation ileatai luzi	_y (1V)	1 15500 auton of neural	Luzzy				

PART – B: (Short Answer Questions)

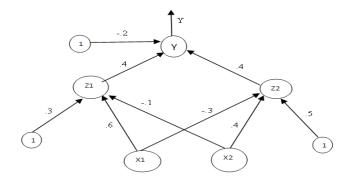
 $(2 \times 5 = 10 \text{ Marks})$

Q.2.	Q.2. Answer ALL questions			
a.	Sketch and mark the parts of a biological neuron.	CO1	PO3	
b.	Compare supervised and unsupervised learning and provide an example for each.	CO1	PO3	
c.	Illustrate the fundamental block diagram of neural network based controller.	CO3	PO3	
d.	Evaluate the output of the neuron y for the network shown in figure using binary	CO5	PO3	

e. Recall the properties of classical sets.

sigmoid activation function.

CO₅ PO4


PART – C: (Long Answer Questions)

 $(6 \times 5 = 30 \text{ Marks})$

Answer ANY FIVE questions

Marks [CO#] [PO#]

- 3. Formulate the expression for the weight updating and explain the standard error (6) CO₁ PO₃ back propagation algorithm used for feed forward networks.
- 4. Using back propagation network calculate the new weights for the network CO₁ PO4 (6)shown in the figure. It is represented with the input pattern [0,1] and the target output is 1. Use learning rate= .25 and identity activation function.

5. Write the application algorithm of discrete Hopfield network.

(6) CO₂ PO4

- Perform a case study for the process identification and control of dynamical (6) CO3 PO₄ systems using neuro controller.
- 7. For a DC Shunt motor the membership functions for series resistance (Rse) and (6) CO4 PO4 armature current (Ia) is given by

 $\mu Rse(\%se) = \{0.3/50 + 0.7/60 + 1.0/100 + 0.2/120\}$

 $\mu Ia(\%a) = \{0.2/20 + 0.4/40 + 0.6/60 + 0.8/80 + 1.0/100 + 0.1/120\}$

and the membership function for (N) in motor speed(rpm)

 $\mu N(rpm) = \{0.33/500 + 0.67/100 + 1.0/1500 + 0.15/1800\}$

- a) Using max-min composition, find $T = R \circ S$
- b) Using max-product composition, find $T = R \circ S$
- 8. Write the step by step implementation procedure for GA.

- (6) CO5 PO4
- 9. With necessary steps explain the fuzzy logic controller designed for image processing.
- (6) CO4 PO4
- 10. A factory process control operation involves two linguistic (atomic) parameters consisting of pressure and temperature in a fluid delivery system. Nominal pressure limits range from 400 psi minimum to 1000 psi maximum. Nominal temperature limits are 130°F to 140°F. We characterize each parameter in a fuzzy linguistic terms as follows:
- (6) CO4 PO4

Low temperature =
$$\left\{ \frac{1}{131} + \frac{0.8}{132} + \frac{0.6}{133} + \frac{0.4}{134} + \frac{0.2}{135} + \frac{0}{136} \right\}$$

High temperature=
$$\left\{ \frac{0}{134} + \frac{0.2}{135} + \frac{0.4}{136} + \frac{0.6}{137} + \frac{0.8}{138} + \frac{1}{139} \right\}$$

High pressure=
$$\left\{ \frac{0}{400} + \frac{0.2}{600} + \frac{0.4}{700} + \frac{0.6}{800} + \frac{0.8}{900} + \frac{1}{1000} \right\}$$

Low pressure=
$$\left\{ \frac{1}{400} + \frac{0.8}{600} + \frac{0.6}{700} + \frac{0.4}{800} + \frac{0.2}{900} + \frac{0}{1000} \right\}$$

Compute the following membership functions: a) Temperature not very low, b) Temperature not very high ,c) Temperature not very low and not very high ,d) Pressure is slightly high (Hint:0.5), e) Pressure fairly high (Hint:2/3), f) Pressure not very low or fairly low.

--- End of Paper ---