QP Code: RD18001055	Reg.						AR 18
	No						

GIET MAIN CAMPUS AUTONOMOUS GUNUPUR – 765022

B. Tech Degree Examinations, December – 2020

(Fifth Semester)

BCEPE5051– CONCRETE TECHNOLOGY

(Civil Engineering)

Time: 2 hrs Maximum: 50 Marks

The figures in the right hand margin indicate marks.

PART – A: (Multiple Choice Questions) $(1 \times 10 = 10 \text{ Marks})$

	1	i. (Maripie Choice Quest	10115)	(I A I)	- 10 1/10	41 14 (3)
Q.1.	Answer	ALL questions			[CO#]	[PO#]
a.	In India	a, the first Portland cement	was manufactu	red in 1904 near	1	2
	(i) De	lhi	(ii)Porb	oander		
	(iii) Ma	ıdras	(iv) Nor	ne of these		
b.	During	the manufacturing of Portla	and cement	of gypsum is added	1	2
	(i) 2%	to 3%	(ii) 3%	to 5%		
	(iii) 5%	to 7%	(iv) 5%	to 10%		
c.		will influence the perfor	r plasticizer	1	2	
	(i) C ₃ S	S	(ii) C ₂ S			
	(iii) C ₃	A	(iv) C ₄ A	\F		
d.	The slu	mp cone value of the pump	able concrete s	hould not be lesser than	2	4
	(i) 50	mm	(ii) 75 ı	mm		
	(iii) 100) mm	(iv) 150	mm		
e.	The har	dened concrete attains	of strength	at 28 days	2	2
	(i) 100)%	(ii) 99%	0		
	(iii) 959	%	(iv) 90%	Ó		
f.	The box	nd strength of the concrete i	is the function	of	2	2
	(i) cor	npressive strength	(ii) spli	tting tensile strength		
	(iii) fle	xural strength	(iv) Nor	ne of these		
g.	The mo	dulus of elasticity common	ly used in prac	tise is	3	4
	(i) sec	ant modulus	(ii) init	ial tangent modulus		
	(iii) tan	gent modulus	(iv) non	e of these		
h.	The val	ue of the Poisson's ratio of	a normal conc	rete lies in the range	3	4
	(i)0 to	0.10	(ii) 0.10) to 0.15		
	(iii) 1 to	0.2	(iv) 0.15	5 to 0.20		
i.	What is	the maximum available wa	ater content for	concrete mixture proportioning	4	4
	(i)	150 kg/m^3	(ii)	175 kg/m^3		
	(iii)	180 kg/m^3	(iv)	200 kg/m^3		
j.	The de	ensity of high density con	ncrete will be	more than conventional	4	4
	concret					
	(i)	25%	(ii)	50%		
	(iii)	75%	(iv)	None of these		

PART – B: (Short Answer Questions)

 $(2 \times 5 = 10 \text{ Marks})$

Q.2.	Q.2. Answer ALL questions			
a.	Differentiate Chemical and mineral admixtures with examples.	1	2	
b.	What are the factors affecting the setting time of concrete?	2	4	
c.	Why do we test the compressive strength of concrete at 1, 3, 7, 14, and 28 days?	2	4	
d.	Mention the different test methods available in NDT and its uses.	3	4	
e.	How do you ensure the quality of concrete on site during construction?	5	4	

PART – C: (Long Answer Questions)

 $(6 \times 5 = 30 \text{ Marks})$

Answ	er ANY FIVE questions	Marks	[CO#]	[PO#]
3.	Discuss the different grades of concrete and its application in construction	(6)	1	4
4.	Assume that you are a Site Engineer for a construction of a residential building, the sand is completely wet due to rain, and how will you modify concrete mixture proportion for concreting with the wet sand?	(6)	1	4
5.	Mention the different types of curing methods available in concrete with its application	(6)	2	4
6.	Discuss the list of factors that contributes the strength and durability of concrete.	(6)	2	
7.	Discuss the effects of shrinkage on the properties of concrete? Explain the different types of shrinkage in concrete.	(6)	3	4
8.	Discuss the NDT methods to test quality and compressive strength of concrete with a neat sketch. How will you determine the modulus of elasticity by Non-Destructive Testing method?	(6)	3	4
9.	Design a M30 grade of RC concrete as per IS 10262- 2019 with the following data;	(6)	3	4
	Cement type- PPC; Maximum size of aggragegate-20 mm; Exposure condition is severe; workability 75 mm slump;Degree of site control- good;Type of aggregate is crushed angular aggregates; Maximum cement content not including fly ash is 450 kg/m ³ . Assume the necessary data. You are requested to use super plasticizer.			
10.	Mention different types of special concrete that could result in sustainable development in infrastructure.	(6)	4	7

--- End of Paper ---