QP C	ode:RD18001035	Reg. No									A	AR 18
		GIET MAIN B. Tech BECPC 50	Deg	ree E (l	xam Fifth 2 503	inati Serr 6 0 – 1	ions, neste DIGI	Dec r) [TAI	embe	er – 2	.020	
Т	(AEI & ECE) Time: 2 hrs Maximu						num: 50 N	ım: 50 Marks				
	The	figures in the	nicht	hand	-	ain i	ndiaa	to me	mlra			
PA	RT – A: (Multiple Cho	figures in the ice Questions		nanu	mar	gm n	luica	te ma	IIKS.	(1 >	× 10=10 N	(Jarks)
0.1	Answer ALL questions										[CO#]	[PO#]
	Answer ALL questions	annliastian in	1: -: 4 - 1		:4 dae a	4.0					[CO#]	[FO#] PO1
a.	MOSFET has greatest a		-								cor	101
	(i) Low power consumption (ii) Less noise (iii) Small amount of apage it takes on (iv) All of the above											
	(iii) Small amount of space it takes on (iv) All of the above a chip											
b.	The width of n-diffusio	n and p-diffus	ion la	yer sh	ould	be					[CO1]	[PO2]
	(i) 3λ	1)λ								
	(iii) 2λ		(i	v) 4λ								
с.	In inverter circuit	transisto	rs is u	sed as	load						CO2	PO1
	(i) Enhancement mode		(ii) Dep	letior	n moc	le					
	(iii) All of the mentione	ed	(i	v) Noi	ne of	the m	nentio	ned				
d.	For better noise imr	nunity, the	NM f	for lo	w si	gnal	shou	ıld b	e at	least	CO2	PO2
	percentage of V _D	D.										
	(i) 25) 10								
	(iii) 50			v) 75	c		6			c		
e.	The output of sequent	ial circuit is r	egarde	ed as	a fun	iction	of ti	ime s	equen	ce of	CO3	PO1
	(i)) Inputs & Outputs		Gi) Out	nute &	? Inte	rnal	etatee				
	(iii) Inputs & Internal s	tates			•			states				
f.	(iii) Inputs & Internal states(iv) External statesAND operations are performed byconnected drivers in pull-down							~~~				
	network.	5 -			•				1		CO3	PO3
	(i) Series		(ii) Para	allel							
	(iii) Parallel-series		(i	v) Ser	ies-pa	ralle	1					
g.	To design transistor-lev	vel schematic	of the	one-b	it full	l-add	er cir	cuit _			CO3	PO3
	total number of pMOS transistors required.							005	105			
	(i) 12		(ii) 28								
	(iii) 14			v) 10								
h.	Voltage bootstrapping										CO4	PO1
	(i) Overcoming three	eshold voltag	ge (ii) Con	stant	thres	hold	voltag	ge droj	ps		
	drops						1(1-	1	1.1			
	(iii) Overcoming voltage	sub-thresho	la (1	v) Ove	ercom	iing s	ub-th	resno	la cur	rent		
i.	When the clock signal	becomes hig	h in d	vnami	ic 100	ric th	ne cir	cuit i	s oner	otina		
1.	in	becomes mg	ii iii u	ynann	10 10 2	,ie, ti		cuit i	s oper	anng	CO4	PO2
	(i) Evaluate phase		Gi) Stat	ic pha	ase						
	(iii) Precharge phase			v) Dyı	-		se					
j.	The most significant d	lisadvantage o				•		gate in	nstead	of a	C02	DO2
5	full-CMOS gate is static power dissipation.							CO3	PO2			
	(i) Zero		-) Non	-							
	(iii) None of the mentio	oned	(i	v) No								

	PART – B: (Short Answer Questions) $(2 \times 5 =$	(2 × 5 = 10 Marks)			
<u>Q.2</u>	. Answer ALL questions	[CO#]	[PO#]		
a.	Why positive photoresist is preferred over negative photoresist?	[CO1]	[PO1]		
b.	Write down the advantages of CMOS inverter.	CO2	PO1		
c.	Show how interconnect delay dominates gate delay in submicron CMO technologies.	S CO2	PO1		
d.	Design the stick diagram of XNOR logic gate.	CO3	PO3		
e.	ne two-phase clocking scheme.	CO4	PO3		

	PART – C: (Long Answer Questions) (6 × 5			
Ansy	wer ANY FIVE questions	Marks	[CO#]	[PO#]
3.	Explain the VLSI design flow in Y-chart.	6	CO1	PO1
4.	Derive the linear and saturation drain current in Gradual Channel Approximation of nMOS transistor.	6	CO1	PO2
5.	Explain the CMOS inverter circuit with VTC and derive the expressions for all the critical voltages with NM calculation.	6	CO2	PO2
6.	Differentiate propagation delay, rise time and fall time with proper diagram of CMOS inverter.	6	CO2	PO1
7.	Find an equivalent CMOS inverter circuit of the logic function $Z = \{(A+B+C)(D+E)\}$ ' by assuming that $(W/L)_p = 12$ for all pMOS transistors and $(W/L)_n = 8$ for all nMOS transistors.	6	CO3	PO3
8.	Explain the design of NOR-based realization of the JK master-slave flip-flop.	6	CO3	PO3
9.	Explain Dynamic bootstrapping with proper diagram.	6	CO4	PO3
10	Design the Boolean function, $Z = PQ + (R + S) TU + VW$ by using standard CMOS and domino CMOS.	6	CO4	PO3

--- End of Paper ---