QP	Code:RD18001023 Reg. No							AR 18			
GIET MAIN CAMPUS AUTONOMOUS GUNUPUR – 765022 B. Tech Degree Examinations, December – 2020 (Fifth Semester) BECPC5020 / BEIPC 5020 – DIGITAL SIGNAL PROCESSING (AE&IE and ECE) Time: 2 hrs Maximum: 50 Marks											
The figures in the right hand margin indicate marks.											
PART – A: (Multiple Choice Questions) (1 x 10 = 10 Ma							rks)				
	Answer ALL questions				(1 1 10	10 1/14	[CO#]	[PO#]			
a.	The first six points of the 8-point DFT of a and 3+j4. The last two points of the DFT ar		-	are 5, 2-j ²	l, 1-j3, 3	3-j4, 0	CO1	PO1			
b.	(i) 2-j4, 1-j3 (iii) 1+j3, 5 Direct computation of the N-point inverse I are	(ii) (iv) DFT /FFTv	1+j3, 2+ 1-j3, 2-j would requ	4	x multip	lications	CO1	PO1			
c.		(ii) (iv) e {1, 2, 3,	None	N(N-1)			CO2	PO1			
d.	 (i) [10, -2,+2j, 2, -2-2j] (iii) [10,1-3j, 2, 1+3j] Two discrete time system with impulse resp connected in cascade. The overall impulse r 	(iv) [10 ponse $h_1(n)$		-1-3j] and $h_2[n] =$	-	re	CO2	PO2			
e.	(i) $\delta[n-1]+\delta[n-2]$ (iii) $\delta[n-1]\delta[n-2]$ A sequence x(n) of length 32 is given and using FFT (decimation-in-time) algorithm. determine the position of x(24),				•	•	CO2	PO2			
f.	(i) 12(iii) 8For the digital filter shown in figure, find th	(ii) (iv) ne frequend	3 6 cy response	e H(e ^{jw})			CO3	PO2			
	$x(n) \xrightarrow{z^{-1}} \xrightarrow{z^{-1}}$,								
g.	What is the condition for linear phase FIR f (i) $h(n) = +h(M-1-n)$ (iii) $h(n) = +h(M+1-n)$	ilter for Sy (ii) (iv)	h(n) = -1	ondition h(M-1-n) h(M+1-n)			CO3	PO1			
h.	A low pass filter is described by the following $0.5x(n)+0.1x(n-1)$. The filter is converted in $H(e^{jw})$. The input-output relation of the high $(i)y(n) = 0.5x(n)-0.1x(n-1)$. (iii) $y(n) = -0.5x(n)-0.1x(n-1)$.	ing different nto a high p n pass filter (ii) y(n	nce equation pass filter	on: by giving 7 by +0.1x(n-1)).		CO4	PO2			

i.	Given analog filter $H_a(s) = \frac{s+2}{(s+2)^2 + 16}$, Re(s) > -1 Determine the digital filter H(z) is			
	designed from $H_a(s)$ using impulse invariant method. Assume sampling period T.	C	D4	PO2
	(i) $\frac{1 - e^{-T}\sin(2T)z^{-1}}{1 - 2e^{-T}\sin(2T)z^{-1} + e^{-2T}z^{-2}}, z < e^{-T}$ (ii) $\frac{1 - e^{-2T}\cos(4T)z^{-1}}{1 - 2e^{-2T}\cos(4T)z^{-1} + e^{-4T}z^{-2}}, z < e^{-2T}$			
	(iii) $\frac{1 - e^{-2T} \sin(4T) z^{-1}}{1 - 2e^{-T} \sin(2T) z^{-1} + e^{-2T} z^{-2}}, z > e^{-T} $ (iv) $\frac{1 - e^{-T} \cos(2T) z^{-1}}{1 - 2e^{-T} \cos(2T) z^{-1} + e^{-2T} z^{-2}}, z > e^{-T}$			
j.	An IIR filter is designed from a prototype causal and stable analog filter		D4	PO1
	$H_a(s) = \frac{1}{(s+2)(s+3)}$ by the impulse invariant method. Determine the IIR filter poles of			
	H(z)			
	(i) e^{T} and e^{2T} (ii) e^{-2T} and e^{-3T} (iii) e^{2T} and e^{-3T} (iv) e^{2T} and e^{-3T}			
	(iii) e^{-T} and e^{2T} (iv) e^{2T} and e^{-3T}			
	PART – B: (Short Answer Questions) (2 x 5 :	= 10 M		
<u>Q.2.</u>	Answer ALL questions	[CO	#]	[PO#]
a.	Give the relationship between Z-Transform and DFT	CO1		PO1
b.	How many multiplication and additions are required for 16 point in DFT and FFT	CO2		PO1
c.	Determine the transversal structure of the system function $H(z) = 1+2z^{-1}-4z^{-3}$			PO2
d.	State the necessary condition for Asymmetry linear phase FIR filter?	CO3		PO1
e.	An impulse response, $h(t) = exp(-2t) u(t)$ of certain LTI system. Find the H(z) by usin impulse invariant technique. Assume T = 0.1 sec.	g CO4		PO2
	ART – C: (Long Answer Questions) ver ANY FIVE questions	(6 x 5 Marks	= 30 M [CO#]	
3.	State and prove the circular shift theorem of DFT	(6)	CO1	PO1
4.	Find the output of a filter whose impulse response is $h(n)=\{1,2,2\}$ and input signal $x(n) = \{3,-1,0,1,3,2,0,1,2,1\}$ using Overlap-save method	(6)	CO1	PO1
5.	The DFT of $x(n)$ is described as $X(K)=\{0,-1-i,6,-1+i\}$. Find the DFT of $x^2(n)$?	(6)		
6.	Design a FIR filter using Hamming window of length 5 if the desired frequency	(6)		
	response is			
	$H_d(\omega) = e^{-j2\omega}$ for $-\pi/4 \le \omega \le \pi/4$			
	= 0 Otherwise			
7.	Find the FFT of the sequence $x(n) = \{1,2,3,4,1,2,3,4\}$ using DIT algorithm and demonstrate radix-2 DIT FFT algorithm	(6)	CO2	PO2
8.	Find the 8-point DFT using DIF-FFT algorithm if x(n)={1,2,2,3,1,4}	(6)		
9.	Obtain the Direct Form-II, Parallel realization of the system described by	(6)	CO4	PO2
	y(n) = -0.1 y(n-1) + 0.72 y(n-2) + 0.7 x(n) -0.252 x(n-2)			
		(6)		
10.	Apply the impulse invariant method $H_a(s) = \frac{10}{(s+2)(s+5)}$ and find the corresponding	(6)	CO4	PO2

digital filter transfer function for sampling frequency of 0.1 samples/second.