QP Code: BD18001009	Reg.						AR 18
	No						

GIET MAIN CAMPUS AUTONOMOUS GUNUPUR – 765022

B. Tech Degree Examinations, December – 2020 (Fifth Semester)

BBTPC5010- Genetic Engineering andr-DNA Technology

(Biotechnology)

Time: 2hrs Maximum; 50 Marks

Answer ALL Questions

The figures in the right hand margin indicate marks.

PART – A: (Multiple Choice Questions) (1 x 10= 10 Marks)

Q.1.	Answer ALL questions		[CO#]	[PO#
a.	The loop region is single stranded. It	can be cleaved by using which enzyme?		
	(i)Exonuclease	(ii) S1 nuclease		
	(iii)RNaseH	(iv)DNase	1	5
b.	Choose the incorrect statement for th	e method homopolymer tailing.		
	(i) The first step is the RNA: DNA	(ii) Terminal transferase is used for the addition		
	hybrid synthesis	of nucleotides on 3' end	1	2
	(iii) Terminal transferase adds only	(iv) The DNA strand is now having known		
	at DNA strands	sequence at 3' end		
c.	What is the final product of the RNas	seH method?		
	(i) blunt ended dsDNA	(ii) staggered dsDNA at both ends	1	1
	(iii) staggered dsDNA at 3' end	(iv) staggered dsDNA at 5' end		
d.	The process of amplification of speci	ific DNA sequences by an enzymatic process is		
	termed as			
	(i) amplification	(ii) polymerase chain reaction(PCR)	2	4
	(iii) translation	(iv) microarrays		
e.	Which of the characteristics is present in	n lacZ gene?		
	(i) It encodes for beta galactosidase	(ii) Beta galactosidase enzyme is responsible		
	enzyme	for cleaving monosaccharides into the	_	
		constituent elements	2	1
	(iii) It doesn't cleaves a substrate	(iv) But if X-gal is cleaved, it liberates pink		
	called as X-gal	coloured dye		
f.	•	ctor. A vector with is used and further		
	through RNA is isolated.			•
	(i) origin of replication, translation	(ii) promoter, transcription	3	2
	(iii) promoter, translation	(iv) origin of replication, transcription		
g.	it in the insert region is called as	a translation of the vector region and continuing	3	3
	(i) hybrid protein	(ii) fusion protein	3	3
	(iii) combination protein	(iv) insert protein		
h.	How many approaches are there in o	. ,		
	(i) 1	(ii) 2	4	1
	(iii) 3	(iv) 4		

i. If a putative protein sequence is cloned in an expression vector and the expressed

	protein is not showing protease activ	ity, then which of the following is not correct?		
	(i) The protein is not protease	(ii) The protein can be incorrectly folded which		
		can block the protease activity		
	(iii) There might be some other	(iv) The most commonly used expression system	4	4
	cofactor required for protease activity	is E.coli		
j.	For getting a large amount of protein used as an expression system?	s to crystallize, which of the following should be		
	(i) Bacterial system	(ii)Yeast systems	4	3
	(iii) Eukaryotic systems	(iv) Both eukaryotic and bacterial systems can		
		be used		

PART – B: (Short Answer Questions)

(2 x 5=10 Marks)

Q.2.	Answer ALL questions	[CO#]	[PO#]
a.	What are DNA and RNA markers? Give an example for each.	1	1
b.	Define Cosmid.	2	5
c.	What is site directed mutagenesis?. Give an example.	3	6
d.	Write Short notes on Gene Mapping.	4	5
e.	What is gene Theraphy?	4	6

PART – C: (Long Answer Questions)

(6 x 5=30 Marks)

Answer ANY FIVE questions			[CO#]	[PO#]
3.	Write the basic principle of Isolation and Purification of DNA.	(6)	1	1
4.	Explain on Bacteria based Expression vectors.	(6)	1	3
5.	How do you clone differentially expressed genes? Explain.	(6)	2	7
6.	Explain the principle and mechanism of micro arrays with pictorial representations.	(6)	2	5
7.	Explain the Sanger sequencing method of DNA with a neat diagrammatic representation.	(6)	3	5
8.	How are heterologus genes expressed in invitro cloning techniques?. Explain.	(6)	3	3
9.	Discuss the Principle, Mechanism and applications of RFLP technique in GE.	(6)	4	5
10.	Discuss on Genetic Engineering Regulations and Safety guidelines.	(6)	4	7

--- End of Paper ---