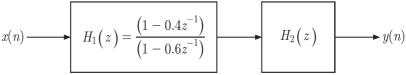
QP Code: RD18001031	Reg. No						AR 18



GIET MAIN CAMPUS AUTONOMOUS GUNUPUR – 765022

B. Tech Degree Examinations, December – 2020 (Fifth Semester)

BECOE 5050 - Introduction to Digital Signal Processing (CSE & IT)

Time: 2 hrs				Maxii	Maximum; 50 Marks			
		The figures in th	e right h	and margin indicate marks.				
		- A: (Multiple Choice Question er <i>ALL</i> questions	s)	(1 x 10	= 10 Mar [CO#]	rks) [PO#]		
a.	The e	nergy of a signal $x[n] = (a)^n u[$	n] is 9/8	units, the value of a is				
	(i)	1/2	(ii)	1/3	CO1	PO1		
	(iii)	1/4	(iv)	3/4				
b.	If the	unit step response of a network	k is (1-e ⁻	at), then its unit impulse response is	CO1	PO2		
	(i)	a e ^{-at}	(ii)	$a^{-1} e^{-at}$				
	(iii)	$(1-a^{-1})e^{-at}$	(iv)	$(1-a) e^{-at}$				
c.	A sys	tem is defined by its impulse re	esponse l	$h(n) = 2^n u(n-2)$. The system is	CO2	PO2		
	(i)	stable and causal	(ii)	causal but not stable				
	(iii)	stable and but not causal	(iv)	unstable and non-causal				
d.		put and output of a discrete time lowing represents causal system?	-	are denoted by x[n] and y[n]. Which o	f CO2	PO1		
	(i)	· ·		$\delta [n-4]$				
	` '	$\delta[n-3]$	` '	$\delta[n-1]\delta[n-2]$				
e.	Two	discrete time system with impu		onse $h_1[n] = \delta[n-1]$ and $h_2[n]$] CO3	PO1		
				e overall impulse response of the				
		ded system is						
	(i)	y[n] = x[n-1] + x[n+2]	(ii)	y[n] = [n-3]x[n+1]				
	(iii)	y[n] = [n+4]x[n-1]	(iv)	y[n] = [n+5]x[n+5]				
f.	A disc	rete time LTI system has an imp	ulse respo	onse $h[n]$ with $h[0] = 1$, $h[1] = -1$, $h[2]$] CO3	PO2		
			•	input sequence $x[n]$ with $x[0] = x[2] =$				
		zero otherwise. The number of n lue of y[2] are respectively	onzero sa	imples in the output sequence y[n], and	1			
		5, 2	(ii)	6.2				
	(iii)	6, 1	(iv)	5, 3				
g.	` ′	•	` ′	in cascade as shown below. The	CO3	PO2		
Ü		Il output $y(n)$ is the same as the						
			-	•				
	transf	er function of the second syste	$m H_2(z)$	18				

(i)
$$\frac{1 - 0.6z^{-1}}{z^{-1}(1 - 0.4z^{-1})}$$

(ii)
$$\frac{\mathbf{z}^{-1}(1 - 0.6\mathbf{z}^{-1})}{(1 - 0.4z^{-1})}$$

(iii)
$$\frac{\mathbf{z}^{-1}(1 - 0.4\mathbf{z}^{-1})}{(1 - 0.6z^{-1})}$$

(iv)
$$\frac{1 - 0.4z^{-1}}{z^{-1}(1 - 0.6z^{-1})}$$

The Z-transform of (n-1)x(n-1)

CO₄ PO₁

(i)
$$-(z-1)dX(z)/dz$$

-zdX(z)/dx(ii)

(iii)
$$-dX(z)/dz$$

(iv) -X(z)/z

i. The ROC of z -transform of the discrete time sequence

CO₄ PO₁

$$x(n) = \left(\frac{1}{3}\right)^n u(n) - \left(\frac{1}{2}\right)^n u(-n-1)$$
 is

(iv)
$$|z| < \frac{1}{3}$$

(v)
$$|\mathbf{z}| > \frac{1}{2}$$

(iv) $2 < |\mathbf{z}| < 3$

$$\text{(vi)} \quad \frac{1}{3} < \left| z \right| < \frac{1}{2}$$

(iv)
$$2 < |\mathbf{z}| < 3$$

j. Consider the z-transform $X(z) = 5z^2 + 4z^{-1} + 3$; $0 < |z| < \infty$. The inverse z- CO4 PO₂ transform x[n] is

(i)
$$5 \delta[n+2] + 3 \delta[n] + 4 \delta[n-1]$$

(ii)
$$5 \delta[n-2] + 3 \delta[n] + 4 \delta[n+1]$$

(iii)
$$5 u[n-2] + 3 u[n] + 4 u[n+1]$$

(iv)
$$5 u[n+2] + 3 u[n] + 4 u[n-1]$$

PART – B: (Short Answer Questions)

 $(2 \times 5 = 10 \text{ Marks})$

Q.2. Answer ALL questions

[CO#] [PO#]

CO1

Determine the energy and power of the signal x(t) = t u(t)

CO1 PO1

Identify the Nyquist sampling rate for $x(t) = 0.5 \sin 50\pi t + 0.25 \sin 25\pi t$ c.

> PO1 CO₂

PO₂

Define Static and Dynamic systems e.

> PO₂ CO3

Find the convolution of the two sequences $x(n) = \{2, 2, 2, 2\}$ and $h(n) = \{1, 1\}$

Determine the range of 'a' for which the LTI system with impulse response $h(n) = a^n u(n)$ CO4 h. PO₂ is stable.

PART – C: (Long Answer Questions)

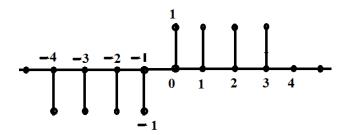
(6 x5 = 30 Marks)

Marks

Answer ALL questions

3. Check whether the following signals are periodic, if periodic, give the period

PO₁ (6)CO1


[CO#]

[PO#]

(1) $x(t) = \cos(4t) + 2\sin(8t)$ (2) $x(t) = 3\cos(4t) + \sin(\pi t)$

Determine and sketch the even and odd parts of the signals shown in figure.

(6) CO1 PO1

5. Give a broad classification of system and their details in brief

- (6) CO2 PO1
- 6. Obtain the Direct Form-II, Cascade and Parallel realization of the system described by y(n) = 3/4 y(n-1) -1/8 y(n-2) + x(n) + 1/3 x(n-1)
- (6) CO2 PO1
- 7. Determine the impulse response for the cascade of two LTI system having impulse response $h_1(n) = (1/2)^n u(n)$ and $h_2(n) = (1/4)^n u(n)$
- (6) CO3 PO2
- 8. Determine the convolution of the signals $x[n] = \{2, -1, 3, 2\}$ and $h[n] = \{1, -1, 1, 1\}$
- (6) CO3 PO2
- 9. A linear time invariant (LTI) system is characterized by the system function
- (6) CO4 PO1

$$H(z) = \frac{3 - 4z^{-1}}{1 - 3.5z^{-1} + 1.5z^{-2}}$$
 Specify the ROC of H(z) and determine h(n)

for the following conditions:

- (i) The system is stable (or) ROC: 0.5 < |z| < 3
- (ii) The system is causal (or) ROC: |z| > 3
- (iii) The system is anti-causal (or) ROC: |z| < 0.5
- 10. A causal LTI system is described by y[n] -5/6 y[n-1] + 1/6 y[n-2] = x[n] where x[n] is (6) CO4 PO1 the input to the system, h[n] is the impulse response of the system. Find system function H(z)

--- End of Paper ---