QP Co	ode: RD18001053 Reg. No						R 18		
GIET MAIN CAMPUS AUTONOMOUS GUNUPUR – 765022 B. Tech Degree Examinations, December – 2020 (Fifth Semester) BCHPE5042 – ADVANCED NUMERICAL METHODS (Chemical Engineering) Time: 2 hrs Maximum: 50 Marks									
The figures in the right hand margin indicate marks.									
PART – A: (Multiple Choice Questions) (1 x 10 = 10 Marks)									
<u>Q.1.</u>	Answer ALL questions					[CO#]	[PO#]		
a.	For decreasing the number of iteratio	ns in Newton R	aphson	method:		CO1	PO1		
	(i) The value of f'(x) must be increased(iii) The value of f'(x) must be decreased	(ii) The valudecreased(iv) The valuincreased	le of f	"(x) m					
b.	Number of iteration depends on the		-			CO1	PO3		
c.	A function is given by $x - e^{-x} = 0$. Fin b = 1 by using Bisection method. (i) 0.655	d the root betwee (ii) 0.665				C01	PO2		
d.	(iii) 0.565 Newton- Gregory Forward inte	(iv) 0.656	mula	can be	used	CO2	PO3		
u.	(i) only for equally spaced intervals (iii) for both equally and unequally spaced intervals	(ii) only for une (iv) for unequa	equally s	paced in					
e.	_	(ii) Simpson's (iv) Romberg's				CO2	PO2		
f.	Numerical differentiation can be use order are (i) equally spaced	, , e	the diffe		f some	CO2	PO2		
g.	In Euler's method: Given initial value y ₀ , then approximation is given by (i) $y_{n+1}=y_n+hf(x_{n-1}, y_{n-1})$	e problem y'=dy		y) with	$y(x_0) =$	CO3	PO1		
h.		y useful to giv (ii) Modified E	ve some Juler Met	initial s	starting	CO3	PO3		
i.	(iii) Newton Raphson Method The partial differential equation $5 \frac{\partial^2 z}{\partial x^2}$	(iv)RungeKutta $\frac{z}{2} + 6\frac{\partial^2 z}{\partial y^2} = xy$				CO4	PO4		

(i)Elliptic (iii)Hyperbolic (ii)Parabolic

(iv)None of these

j. For solving one dimensional heat equation using Bender-Schmidt the value CO4 PO4 of λ is

(i)
$$\frac{k}{ah^2}$$
 (ii) $\frac{h}{ak^2}$
(iii) $\frac{k}{ah}$ (iv) $\frac{h}{ak}$

PART – B: (Short Answer Questions)

(2 x 5 = 10 Marks)

<u>Q.2</u>	. Answer ALL questions	[CO#]	[PO#]
a.	Evaluate $\sqrt{15}$ using Newton – Raphson formula.	CO1	PO3
b.	State Newton's formula on interpolation. When it is used?	CO2	PO3
C.	Evaluate $\int_{1/2}^{1} \frac{1}{x} dx$ by trapezoidal rule dividing the range into 4 equal parts	CO2	PO1
d.	What are multi-step methods? How are they better than single step methods?	CO3	PO2
e.	Classify the following equation: $\frac{\partial^2 u}{\partial x^2} + 4 \frac{\partial^2 u}{\partial x \partial y} + 4 \frac{\partial^2 u}{\partial y^2} - \frac{\partial u}{\partial x} + 2 \frac{\partial u}{\partial y} = 0$	CO4	PO4

Answ	PART – C: (Long Answer Questions) (6 x a ver ANY FIVE questions	5 = 30 Ma Marks	rks) [CO#]	[PO#]
	Find a root of $x \log_{10} x - 1.2 = 0$ using Newton Raphson method correct to decimal places.		C01	PO2
4.	Solve the following equation by Gauss Elimination method 10x-2y+3z = 23,2x+10y-5z = -33,3x-4y+10z = 41	(6)	C01	PO2
5.	Find the polynomial $f(x)$ by using Lagrange's formula and hence find $f(3)$ for $x: 0 1 2 5$	(6)	CO2	PO2
6.	f(x): 2 3 12 147 Evaluate $\int_{0}^{1} \frac{dx}{1+x}$ and correct to 3 decimal places using Romberg's method and	(6)	CO2	PO3
	hence find the value of $\log_e 2$.			
7.	Using R.K.Method of order 4, find y for x = 0.2 given that $\frac{dy}{dx} = xy + y^2$, $y(0) = 1$	nt (6)	CO3	PO2
8.	Apply modified Euler's method to find $y(0.2)$ and $y(0.4)$ give $y' = x^2 + y^2$, $y(0)=1$ by taking h=0.2.	n (6)	CO3	PO1
9.	Solve $\frac{\partial^2 u}{\partial x^2} = \frac{\partial u}{\partial t}$ given u(0,t)=0, u(5,t)=0, u(x,0)=x^2(25 - x^2), ind u in the range	e (6)	CO4	PO4
	taking h=1 upto 3 seconds using Bender- Schmidt recurrence equation			
10.	Solve the equation $\frac{\partial u}{\partial t} = \frac{\partial^2 u}{\partial x^2}$ subject to the condition	(6)	CO4	
	$u(x,0)=\sin\pi x, 0 \le x < 1; u(0,t)=u(1,t)=0$ using Crank-Nicolson method. End of Paper			