QP Code: RD18001039			Reg. No											AR 18	
	LOF ENGINEERI	GIET	MAIN	CAM	1PU	US A	AUT	ON	OMC	OUS	GU	JNU	PUR	R – 765022	
	1400		В. Т	'ech E	Deg	ree l	Exan	ninat	ions	, Dee	cemł	oer –	2020)	
(Fifth Semester)															
BCHPC 5030 – Chemical Reaction Engineering-I													g-I		
	Conten D	Z.	2011									8		8 -	
T	ime: 2 hr	<u>s</u>			al Engineering) Maximum; 50 Marks										
			figures in	the ri	ight	t han	d ma	rgin i	indica	ate m	arks			,	
PART – A: (Multiple Choice Questions)									(1 x 10 = 10 Marks)						
<u>Q.1.</u>	Answer	ALL questions													
a.	Name to compos	• •	reaction, when the rate of reactio					n is affected only by temperature, pressure &							
	(i) Homogenous					G	i)	Heterogeneous							
	(ii) Both i & ii						v)	Only catalytic heterogeneous reactions						reactions	
b.	All radioactive reactions are of type of					(1	•)	OIII	y cau	uyuc	neter	ogen	.ous 1	edetions	
0.	(i) Zero order					G	i)	First order							
	(iii) Second order						v)		rd ord						
c.	. ,	reactor is suitab	ole for			(-	.,		u oru	.01					
	(i) Gas phase reactions at large scale					(i	i)	Liquid phase reactions							
	 (iii) To obtain uniform polymer products in highly exothermic 						v)	None of the above							
d	With th	reactions	naa tima c	f on i	***	vorait		thorn	nol ro	antin	n hai	n a 00	mind	out in an ideal	
d.		e decrease in sp			nev	CISIC	10 150	Julein		actio		ng ca	ineu	out in an ideal	
	flow reactor, the conversion will (i) Decreases					G	i)	Inor	eases						
					`	·									
e.	(iii) Remains same (iv) None Non-catalytic reaction of particles with surrounding fluids can be represented by														
c.	(i) Progressive conversion model						i)	Unreated core model							
	(ii) Either (i) or (ii)					v)	None								
f.	Which of the following statement is wrong?					(1	•)	1101							
1.	(i) Catalysts can accelerate a					(i	i)	Cata	alyst o	can st	art a	chem	ical r	eaction	
	(:::)	chemical reaction						Catalyst can hasten and retard the rate of a							
	(iii) Catalyst can retard the rate of reaction						v)	chemical reaction							
	Duning		omore onto	levat th											
g.	-	-		iyst th	e ae	•		tion can be occurred by							
	(i) Parallel deactivation(iii) Side by side deactivation						i)	Series deactivation							
h	(iii) Kinatias	-			+		v)	Any one of the above							
h.	Kinetics of a homogeneous catalysed system ca														
	(i) Fixed bed reactor					(i	-	Plug flow catalytic reactor Any one of the above							
:	(iii) Fluidised bed reactor						v)	Any	one	or the	2006 S	ve			
1.	Which of the following is an autocatalytic reaction							Combustion of fuel							
	(i)					(i		Combustion of fuel Photochemical reactions							
	(iii) Both (i) & (ii)						v)	Pho	toche	mica	i read	tions			
J.	A semi batch reactor (i) Is same as plug flow reactor (ii)								-1 <i>-</i> -		·	ar-! 1	.1 2	tion or 1	
	(i) Is same as plug flow reactor (iii) In which valueity of reaction can							Employs mixing in axial direction only In which residence time is constant							
	(iii) In which velocity of reaction can					(1	v)	in which residence time is constant							
		be controlled													

PART – B: (Short Answer Questions)

Q.2. Answer ALL questions

- a. Why activation energy is important in a reaction? What do you understand by promoter in a chemical reaction?
- b. Explain equilibrium constant and half-life period.
- c. Phosphine decomposes when heated according to the following reaction.

 $4PH_3 \rightarrow P_4$ (g) + $6H_2$ (g) at a given instant, the rate at which phosphine decomposes is $2.4*10^{-3}$ mol/l.s. What is the rate of formation of P4 and H2?

- d. Explain recycle reactor and recycle ratio.
- e. What is the importance of selectivity during designing of multiple reactions?

PART – C: (Long Answer Questions) (6 x 5 = 30 Marks)

Answer ANY FIVE questions

- 3. At 500 K the rate of a bimolecular reaction is 10 times the rate at 400 K. find the activation (6) energy for the reaction (a) from Arrhenius law, (b) Collision theory, (c) what is the % difference in the rate of reaction at 600 K predicted by these two methods?
- 4. On doubling the concentration of the reactant, the rate of reaction triples. Find the order of the reaction. (6)
- 5. GIET is a person of habit. For instance, his Friday evening are all alike-into the joint with his week's salary of Rs. 180, steady gambling for 2 h and then home to his family leaving Rs. 45 behind. The betting pattern is predictable. He always bets in amounts proportional to his cash in hand and his losses are also predictable at a rate proportional to his cash in hand. This week GIET received a raise, so he played for three h, but as usual went home with Rs. 135. How much was his raise?
- 6. It is stated that the half-life method for finding reaction order can be extended to any (6) fractional life date. Do this defining $t_{1/2}$ as the time required for the reactant concentration to drop to $1 \setminus m^{th}$ of its original value.
- 7. Do the material and energy balance of CSTR, PFR, Batch reactor. (6)
- 8. Discuss about the batch reactor, semibatch reactor and their advantages, drawbacks and (6) applications.
- 9. A first order homogeneous gas phase reaction A→3R, is first studied in a constant pressure (6) batch reactor. At a pressure of 2 atm and starting with pure A, the volume increase by 75 % in 15 min. If the same reaction is carried out in constant volume reactor and the initial pressure is 2 atm, how long is required for the pressure to reach 3 atm.
- 10. A liquid phase elementary reaction A+B→ R+S is carried out in a plugflow reactor. For equimolar amount of A and B (C_{A0} = C_{B0} = 0.9 mol/l), 94 % conversion is achieved. If a CSTR, 10 times as larger as the plug flow reactor is arranged in series with the existing unit, which unit needs to be arranger first (in series) to enhance the production rate.

--- End of Paper ---

Marks