

	_	ne right hand margin indicate marks.
	PART – A: (Multiple Choice Question	(1 x 10= 10 Marks) (1 x $10=10$ Marks)
).1	. Answer ALL questions	
a.	Manipulated variable In a water heater is which of the followings	
	(i) The inlet water flow rate	(ii) The outlet water flow rate
	(iii) The inlet water temperature	(iv) The heat input rate
b.	The transfer function of a process is $1/(16s^2 + 8s + 4)$. If a step change is introduced into the	
	system, then the response will be	
	(i) Under damped	(ii) Critically damped
	(iii) Over damped	(iv) None of these
c.	The rate of response of the first order system is	
	(i) Independent of time constant	(ii) Inversely proportional of time constant
	(iii) Directly proportional of time	(iv) None of these
	constant	
d.	Phase lag of the frequency response of a second order system to a sinusoidal forcing function	
	(i) Approaches 180°	(ii) Is 90° at the most
	asymptotically	
	(iii) Is 30°	(iv) Is 120°
e.	In a -ve feed-back control system	G and H denote forward path and backward path transfe
	functions respectively. The closed loop output-input relationship is	
	(i) G/(1 + H)	(ii) $H(1 + G)$
	(iii) G/(1 + GH)	(iv) G/H
f.	The inverse Laplace transform of the function $f(s) = 1/s(1 + s)$ is	
	(i) $1 + e^t$	(ii) 1 - e^t
	(iii) $1 + e^{-t}$	$(iv) 1 - e^{-t}$
g.	Routh stability method uses	loop transfer function.
	(i) Closed	(ii) Open
	(iii) Either (i) or B(ii)	(iv) Neither (i) nor (ii)
h.	Use of I-control along with P-control facilitates	
	(i) Reduction of offset	(ii) Reduction of oscillation
	(iii) Elimination of offset	(iv) Reduction of stability time
i.	Cascade control is characterized by:	- -
	(i) the presence of a "lead/lag"	(ii) a special relay or function block to compensate for
	relay or function block	nonlinear process gain

(iii) one controller providing a (iv) two controllers whose outputs are selected either by setpoint for another controller high or low value

j. Zero-order hold used in practical reconstruction of continuous-time signals is mathematically represented as a weighted-sum of rectangular pulses shifted by:

(i) Integer multiples of the (ii) One sampling interval sampling interval(iii) Any multiples of the sampling (iv) 1 second intervals

interval

PART – B: (Short Answer Questions)

Q.2. Answer ALL questions

- a. What do you mean by characteristic equation of a control system?
- b. Write a brief note on cascade control system.
- c. What are Gain and Phase margins?
- d. What is Ziegler-Nichols controller tuning?
- e. What is corner frequency, cross over frequency and response frequency?

PART – C: (Long Answer Questions)

Answer ALL questions

`3. What is a feed forward control system? Explain in detail.

- 4. Find the Laplace inverse of $\frac{5s+3}{(s-1)(s^2+2s+5)}$ (6)
- 5. A step change of magnitude 4 is introduced into a system having T.F.;

$$\frac{Y(s)}{X(s)} = \frac{10}{S^2 + 1.6s + 4}$$

Determine: (a) % overshoot, (b) decay ratio, (c) ultimate value of Y(t), (d) max value of Y(t) (e) rise time.

- 6. Explain the working of a McLeod vacuum gauge with neat sketch. (6)
- 7. For a control system the characteristic equation is

$$s^4 + 4s^3 + 6s^2 + 4s + (1 + K) = 0$$

(i) Determine the value of *K* above which the system is unstable.

(ii) Determine the value of K for which two of the roots are on the imaginary axis, and determine the values of these imaginary roots and the remaining two roots.

8. A PD controller is used in a control system having a first-order process and a (6) measurement lag as shown in Fig.

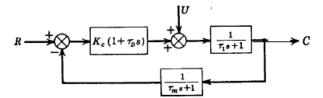
(6 x 5 = 30 Marks)

Marks

(6)

(6)

(6)


 $(2 \times 5 = 10 \text{ Marks})$

(i) Find expression for ζ and τ for the closed-loop response.

(ii)If $\tau_1 = 1 \text{ min}$, $\tau_m = 10 \text{ sec}$, find Kc so that $\zeta = 0.7$ for the two cases:

(a) $\tau_D = 0$ Sec, (b) $\tau_D = 3$ sec.

(iii) Compare the offset and comment on the advantage of adding the derivative mode.

9. The open-loop transfer function of a plant is given by:

$$G(s) = \frac{e^{-2s}}{10s+1}$$

Design a Dahlin digital controller for the system to achieve a closed-loop time constant of 5 s.Assume that T = 1 s.

10. Write the materials of construction and principles of working of Thermocouple with neat (6) sketch. Show the emf temp curve.

--- End of Paper ---

(6)