QP Code:	Reg.						AR 18
	No						

GIET MAIN CAMPUS AUTONOMOUS GUNUPUR – 765022

B. Tech Degree Examinations, December – 2020 (Fifth Semester)

BCHPC 5020 - Mass Transfer II

(Chemical Engineering)

Time: 2 hrs Maximum: 50 Marks

The figures in the right hand margin indicate marks.

	PART	- A: (Multiple Choice Questions)	$(1 \times 10 = 10 \text{ Marks})$				
Q.1	. Answer A	LL questions					
a.		uid-liquid extraction depends on					
	(i)	Diffusion	(ii)	Reactivity			
	(iii)	Temperature	(iv)	Pressure			
b.	In liquid-li	iquid extraction process the solvent should be					
	(i)	Chemically reactive	(ii)	Reactive and unstable			
	(iii)	Stable and inert	(iv)	All of these			
c.	The main	theory of leaching neglects mechanisms					
	(i)	For holding the material as solid	(ii)	For losing the material as solid			
	(iii)	Both	(iv)	None of these			
d.	In leaching	g operation, for constant under flow $\frac{y}{x}$ is					
	(i)	1	(ii)	2			
	(iii)	3	(iv)	4			
e.	Adsorption	n of acetone vapour on activated can is					
	(i) h	ighly endothermic process	(ii)	an exothermic process			
	(iii)	a slightly endothermic process	(iv)	none of the above			
f.	Adsorption	n is often best choice for					
	(i)	Separation from a dilute solution	(ii)	Separation from a concentrated solution			
	(iii)	Both (i) and (ii)	(iv)	None of these			
g.	When hys	teresis is observed, the adsorption equilibrium pressur	e				
	(i)	Is always equals to that obtained by adsorption	(ii)	Is always higher than that obtained by adsorption			
	(iii)	Is always lower than that obtained by adsorption	(iv)	May be equal to or higher than that obtained by adsorption			
h.	Mass of w	ater held in a given volume of gas					
	(i)	Absolute humidity	(ii)	Relative humidity			
	(iii)	Both (i) and (ii)	(iv)	None of these			
i.	Basis for manufacturing instant coffee and laundry detergent involves						
	(i)	Batch drying	(ii)	Spray drying			
	(iii)	Both	(iv)	None of these			
j.	If radiatio period	n and conduction through solid are negligible, the	rate of	drying during the constant rate			
	(i)	Increases with Increases in the mass velocity of gas	(ii)	Decreases with Increases in the mass velocity of gas			
	(iii)	Remains unaffected with change in the mass velocity of gas	(iv)	None of these			

PART – B: (Short Answer Questions)

$(2 \times 10 = 20 \text{ Marks})$

Q.2. Answer ALL questions

- a. Define: plait point and Tie line.
- b. What are the various factors which limits the rate of Solid-Liquid extraction?
- c. What is heat of wetting? Give example.
- d. Differentiate between physical adsorption and chemisorption.
- e. Discuss the factors, which affect the rate of drying.

PART – C: (Long Answer Questions)

 $(6 \times 5 = 30 \text{ Marks})$

Answer ANY FIVE questions

Marks

(6)

- 3. It is desired to reduce the concentration of pyridine in 500 kg of aqueous solution from 20 weight percent to 5 wt percent in a single batch extraction using chlorobenzene as solvent. Equilibrium compositions (end points of the tie line) in terms of weight percent of pyridine-water-chlorobenzene are (5, 95, 0) and (11, 0, 89). Then calculate the amount of pure solvent required in kg for the operation.
- 4. Explain how you will find out the final composition of the solute in the raffinate for immiscible solvent and diluents in single and multistage cross current extraction.
- 5. What is the principle of leaching? Describe the Bollman extractor used in leaching operation. (6)
- 6. 500kg/hr. of mustard cake is to be extracted in a counter current cascade with ether to recover oil. The ether which has been partially purified contains 5% oil. The fresh cake contains 15% oil and is to be extracted to a composition of 2% oil (on solvent free basis). If 200kg of solvent is to be used, What percentage of oil entering with the cake is recovered in the extract?
- 7. Sketch and explain the shape of different equilibrium adsorption isotherms using an appropriate plot. (6)
- 8. Carbon disulphide is to be absorbed from a dilute gas mixture $\mathbf{CS_2}$ - $\mathbf{N_2}$ into pure non-volatile oil at atmospheric pressure in a counter current absorber. The mole fraction of $\mathbf{CS_2}$ inlet gas stream is 0.05 and the flow rate of gas stream, \mathbf{G} is 1500koml/hr. The equilibrium relation is given by; $\mathbf{Y} = \mathbf{0.5} \ \mathbf{X}$

Where, X is the mole fraction of CS_2 in liquid stream. It is desired to reduce the mole fraction of CS_2 in the gas stream is 0.005.

- (i) Calculate the minimum value of **L/G**, where L is the liquid flow rate in kmol/hr
- (ii) Derive the equation for the operating line if **L/G** is equal to 1.5 times the minimum values.
- 9. It is desired to dry a certain type of fiber board in sheets 13.1centimeter by 16.2 centimeter by 7.1 centimeter from 58% to 5% moisture (wet basis) content. Initially from laboratory test data with this fiber board, the rate of drying at constant rate period was found to be 8.9 kg/m² hr. The critical moisture content was 24.9% and the equilibrium moisture content was 1%. The fiber board is to be dried from one side only and has a bone-dry density of 210 kg/m³. Determine the time required for drying. The falling rate may be assumed liner.
- 10. Explain the principle and applications of rotary drier with neat diagram.