AR 19 Reg. No

Time: 2hrs

GIET UNIVERSITY, GUNUPUR – 765022

B. Tech (Third Semester – Regular) Examinations, December – 2020

BBSCS3040 - DISCRETE MATHEMATICAL STRUCTURES

(CSE & CST)

Maximum: 50 Marks

Answer ALL Questions The figures in the right hand margin indicate marks. PART – A: (Multiple Choice Questions)(1 x 10 =10 Marks)

Q.1. Answer ALL questions

a.	Which of the following sentence is not a	proposition?
	(i) Ram is a name	(ii) Four is even
	(iii) 5+6=12	(iv) What a hit!
b.	$p \rightarrow q$ is logically equivalent to	
	(i) $\neg p \lor \neg q$	(ii) $\neg p \lor q$
	(iii) $p \lor \neg q$	$(iv) \neg p \land \neg q$
c.	If $f(n)$ is defined recursively by $f(0)=1$ and for $n \ge 0$, $f(n+1) = f(n) + 2$, then $f(1)$ is equal to	
	(i) 1	(ii) 2
	(iii) 3	(iv) 4
d.	The generating function for the sequence $1, a, a^2, a^3,$ is	
	(i) $\frac{1}{1}$	(ii) <u>1</u>
	$(i)\frac{1}{1-ax}$	$(ii)\frac{1}{\left(1-ax\right)^2}$
	(iii)1-ax	$(iv)(1-ax)^2$
e.	-	(ii) an equivalence relation
	(i) a poset	(ii) an equivalence relation
	(iii) partial order relation	(iv) equivalence classes
f.	A lattice which is complemented and dis	tributive is called a
	(i) Boolean algebra	(ii) Complemented lattice
	(iii) Bounded lattice	(iv) Distributive lattice
g.	The dual of $x.(x+y) = x$ for all $x, y \in B$	is
	$(\mathbf{i}) \mathbf{x} \mathbf{y} = \mathbf{x}$	(ii) x + xy = x
	(iii) x + (x + y) = x	(iv) x + y = x
h.	Let Q^+ be the set of all positive rational r	numbers under the operation * defined by $a * b = \frac{ab}{2}; a, b \in Q^+$. The
	identity element of Q^+ under * is	
		(ii) 1
	(1) 0	
	(i) 0 (iii) 2	(iv) 3
i.		
i.	(iii) 2	
i.	 (iii) 2 The degree of an isolated vertex is (i) zero (iii) two 	(iv) 3
i. j.	 (iii) 2 The degree of an isolated vertex is (i) zero (iii) two A tree with 20 vertices has 	 (iv) 3 (ii) one (iv) three
	 (iii) 2 The degree of an isolated vertex is (i) zero (iii) two 	(iv) 3 (ii) one

PART – B: (Short Answer Questions)

Q.2. Answer ALL questions

d

- a. Let P(x) denote the statement "x>6". What are the truth values of P(7) and P(5)?
- b. Solve the recurrence relation $a_n = 3a_{n-1} + 4a_{n-2}; n \ge 2$.
- c. In any Boolean algebra, if a + b = 1 and a.b = 0. Show that b = a'.

If the permutations of the elements of {1,2,3,4,5} are given by
$$\alpha = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 2 & 3 & 1 & 4 & 5 \end{pmatrix}$$
, $\beta = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 1 & 2 & 3 & 5 & 4 \end{pmatrix}$ and

$$\gamma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 5 & 4 & 3 & 1 & 2 \end{pmatrix} \text{ then find } \alpha\beta\gamma.$$

e. What is the value of the prefix expression $+-3\uparrow 284$?

PART – C: (Long Answer Questions)

Answer ANY FIVE questions

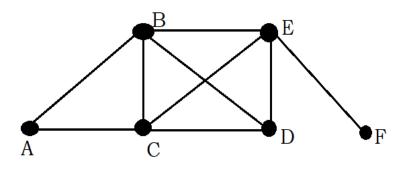
3. Express the following statements using quantifier:

"One student in this class know how to write programs in JAVA"

"Everyone who knows how to write programs in JAVA can get a high paying job"

imply the conclusion "Someone in this class can get a high paying job".

- 4. Use mathematical induction to prove that $\frac{1}{1.2} + \frac{1}{2.3} + \frac{1}{3.4} + \dots + \frac{1}{n(n+1)} = \frac{n}{n+1}$ where n is a positive integer. (6)
- 5. Use the method of generating function to solve the recurrence relation $a_n = 3a_{n-1} + 1, n \ge (6)$ 1 given that $a_0 = 1$.
- 6. Using Warshall's algorithm find the transitive closure of the relation (6) $R = \{(1,1), (1,3), (1,5), (2,3), (2,4), (3,3), (3,5), (4,2), (4,4), (5,4)\}$ defined on a set $A = \{1,2,3,4,5\}$.
- Prove that D₄₂ ≡ {S₄₂,D} is a complemented lattice by finding the complements of all the elements (6) where S₄₂ is the set of all divisors of the positive integer 42 and D is the relation of "division", aDb if and only if a divides b.
- 8. State and prove Lagrange's theorem.
- 9. Verify handshaking theorem for the following undirected graph.



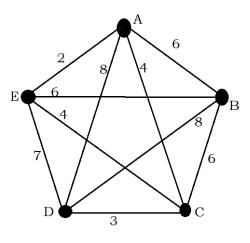
(6 x 5=30 Marks)

Marks

(6)

(6)

(6)



--- End of Paper ---