

GIET UNIVERSITY, GUNUPUR – 765022

B. Tech (Third Semester - Regular) Examinations, December - 2020

BPCPR 3040 - MATERIAL & ENERGY BALANCE

(Petrochem and Petroleum Refinery Engineering)

Time: 2 hrs Maximum: 50 Marks

The figures in the right hand margin indicate marks.									
PART – A: (Multiple Choice Questions)					$(1 \times 10 = 10 \text{ Marks})$				
<u>Q.1</u>	. Answer ALL questions			[CO#]	[PO#]				
a.	Which one is an incorrect conversion			CO1	1				
	(i) $1 \text{ inch} = 2.54 \text{ cm}$	(ii)	1 mile = 5280 ft.						
	(iii) 1 ft. = 12 inch	(iv)	None of the mentioned						
b.	A car is travelling with a speed of 550 ft/sec	e. How fa	ast it is going in miles per hour?	CO1	1				
	(i) 375	(ii) 750)						
	(iii) 900	(iv) 180	00						
c.	The ratio of partial pressure of the vapour is the vapour component is called	n the gas	s mixture and the vapour pressure	of CO4	2				
	(i) Relative Humidity	(ii) Hu	midity						
	(iii) Dry air pressure	(iv) No	ne of the mentioned						
d.	Psychrometric chart is plotted between the p	paramete	rs	CO4	2				
	(i) Humidity and temperature	(ii) Hu	midity and pressure						
	(iii) Humidity and volume of the dry air	(iv) No	ne of the mentioned						
e.	Any arbitrary portion of or whole process th	nat is con	sidered for analysis is called	CO3	3				
	(i) System	(ii) Bo	undary						
	(iii) Surrounding	(iv) No	ne of the mentioned						
f.	For the given reaction $C_5H_{12} + 8O_2 \rightarrow 5C_0$	$CO_2 + 6H_2O$. If the reactants C_5H_{12} & O_2 are							
	having 2 moles an 8 moles of initial feed	respectively. Which is the excess reactant in CO2 4			4				
	the reaction?								
	$(i)C_5H_{12}$	(ii) O_2							
	(iii) CO ₂	(iv) H_2	0						
g.	Volume of a system is			CO3	3				
	(i) Intensive property	(ii) Ex	tensive property						
	(iii) Neither intensive nor Extensive	(iv) No	ne of the mentioned						
h.	$Q = UA(T_2-T_1)$; When $Q < 0$			CO3	3				
	(i) Heat is transferred from system	(ii) He	at is transferred from surrounding						
	(iii) Heat is gained by system	(iv) No	ne of the mentioned						
i.	Purge stream comes from?			CO2	4				
	(i) Feed stream	(ii) Pro	oduct stream						
	(iii) Recycle stream	(iv) No	ne of the mentioned						
j.	How many gm moles oxygen are there in 88	8 gms carbon di oxide? CO1 1			1				
	(i)1	(ii)2							
	(iii)3	(iv)4							

PART – B: (Short Answer Questions) Q.2. Answer ALL questions			$(2 \times 5 = 10 \text{ Marks})$ [CO#] [PO#]		
a.	Convert volumetric flow rate of 5m ³ /s into l/s		CO1	1	
	If 'H' is the absolute humidity and 'T' is the dry bulb temperature of humid air, explow to calculate the wet bulb temperature ' $T_{\rm w}$ ' and the dew point temperature using humidity chart?		CO4	2	
c.	List out few advantaged of recycling operations.		CO2	4	
d.	State Kopp's rule		CO3	3	
e.	Differentiate Proximate and Ultimate analysis		CO3	3	
PART – C: (Long Answer Questions) Answer ANY FIVE questions				rks) [PO#]	
3.	Cracked gas from a petroleum refinery has the following composition by volume: methane 45%, ethane 10%, ethylene 25%, propane 7%, propylene 8%, n-butane 5%. Find (a) the average molecular weight of the gas mixture, (b) the composition by weight and (c) specific gravity of the gas mixture.	(6)	CO1	1	
4.	Air is flowing through a duct under a draft of 4.0 cm of H_2O . The barometer indicates that the atmospheric pressure is 730 mm Hg. What is the absolute pressure of the gas in inches of mercury?	(6)	CO1	1	
5.	Air at a temperature of 20 $^{\circ}\text{C}$ and pressure 750 mm Hg has a relative humidity of 80%.	(6)			
	(a) Calculate the molal humidity of air.				
	(b) Calculate the humidity of this air if its temperature is reduced to $10\ ^{\circ}\text{C}$ and its pressure increased to 35 psi, condensing out some of the water.		CO4	2	
	(c) Calculate the weight of water condensed from 1000 ft ³ of gas.				
	Data: Vapour pressure of H2O at 20 °C =17.5 mm Hg and at 10 °C = 9.2				
	mm Hg.				
6.	Partial pressure of water vapour in a mixture of air-water vapour at a total pressure of 800 mmHg and a temperature of 60° C is 100 mmHg. Calculate the following (i) Humidity (ii) mole fraction (iii) volume fraction (iv) relative humidity (v) g of water / m3 mixture. Assume vapour pressure is 150 mmHg at 60° C.	(6)	CO4	2	
7.	It is required to prepare 1250 kg of a solution composed of 12 wt.% ethanol and 88 wt.% water. Two solutions are available, the first contains 5 wt.% ethanol, and the second contains 25 wt.% ethanol. How much of each solution are mixed to prepare the desired solution?	(6)	CO3	3	
8.	The exhaust gas from a hydrocarbon fuel oil fired furnace shows 10.2% - CO_2 , 7.9% O_2 and 81.9% N_2 by Orsat analysis. Calculate (i) % Excess of Air used , (ii) Kg of dry air supplied per kg of Oil burnt.	(6)	CO3	3	
9.	Calculate the standard heat of formation of acetylene (C_2H_2) given that he standard heat of combustion of acetylene is -1299.61 KJ, the standard heat of combustion of carbon is -393.51 KJ and the standard heat of formation of liquid water is -285.84 KJ	(6)	CO3	3	
10.	Calculate the theoretical flame temperature of a gas having 20% CO and 80% N_2 when burnt with 150% excess air. Both air and gas being at 25°C. Data: Heat of formation of CO_2 = -94052 cal/gmol CO = -26412 cal/gmol at 25°C Cpm values are, CO_2 =12.1, O_2 =7.9, N_2 =7.55 Cal/gmol K	(6)	CO3	3	
	End of Paper				