AR 19

Reg. No

GIET UNIVERSITY, GUNUPUR – 765022

B. Tech (Third Semester - Regular) Examinations, December - 2020

BPCME 3020 - ENGINEERING THERMODYNAMICS

(Mechanical Engineering)

Time: 2 hrs		Maxim	um: 50 Marks				
The figures in the right hand margin indicate marks.							
· •	hoice Qu	uestions)(1 x 10 =10 Marks)					
Q.1. Answer ALL questions			[CO#]	[PO			
An open system is one in which			CO1	PO1			
(i) Mass does not cross boundaries of the							
system, through energy may do so		ies of the system					
(iii)Both energy and mass cross the boundaries	(iv)Mas	s crosses the boundary but not the energy					
of the system			001				
b. Which of the following is the basic of temperature			CO1	PO1			
(i) Zeroth law of thermodynamics		First law of thermodynamics					
(iii) Second law of thermodynamics	(iv)	Third law of thermodynamics	COL	PO2			
c. The General gas equation is (i) $PV = nRT$	(ii)	PV = mRT	CO2	PO2			
(i) $PV = nRT$ (iii) $PV^n = C$	(ii) $(iv)C_p$ -						
d. Kelvin Planck's law deals with	$(\mathbf{I}\mathbf{v})\mathbf{C}_{p}$ -	$C_v = N/3$	CO2	PO1			
(i) Conversation of energy	(ii)	Conservation of work	02	101			
(iii) Conversion of heat into work	(iv)	Conservation of mass					
e. Carnot cycle consists of	(11)	Conservation of mass	CO2	PO1			
(i) Two constant volume and two	(ii) Two	isothermal and two reversible adiabatic		101			
reversible adiabatic processes	processe						
(iii) Two constant pressure and two	(v)	One constant volume, one constant					
reversible adiabatic processes		pressure and two reversible adiabatic					
		processes					
f. The enthalpy of dry saturated steam	with the i	ncrease in pressure	CO3	PO1			
(i) Decreases	(ii)	Increases					
(iii) Remains constant	(iv)	All of the above					
g. The amount of heat absorbed to evaporate 1 kg	of water	from its saturation temperature, without	CO3	PO2			
change of temperature, is called							
(vi) Sensible heat of water							
(vii) Enthalpy of steam		(iv) Entropy of steam					
h. In an irreversible process there is a			CO4	PO1			
(i) Loss of heat	(ii)	No loss of work	001	101			
(iii) gain of heat	(iv)	no gain of heat					
i. The entropy may be expressed as a function of			CO4	PO1			
(i) pressure and temperature	(ii)	temperature and volume					
(iii) heat and work	(iv)	all the above					
Availability function is expressed as	. ,		CO4	PO2			
(i) $a = (u + P_0 V - T_0 S)$	(v)	$\mathbf{a} = (\mathbf{u} + \mathbf{P}_0 \mathbf{V} - \mathbf{T}_0 \mathbf{dS})$					
(vi) $a = (du+P_0dV-T_0S)$	(vii)	$\mathbf{a} = (\mathbf{u} + \mathbf{P}_0 \mathbf{V} + \mathbf{T}_0 \mathbf{S})$					

PART – B: (Short Answer Questions)			(2 x 5 = 10 Marks)		
<u>Q.2</u>	2. Answer ALL questions	[(CO#] [PO#]	
a.	Explain Zeroth Law of thermodynamics?	C	CO1 I	201	
b.	Define Specific heat capacity at constant pressure and Specific heat capacity at constant volume.	C	2O2 I	202	
c. State the Kelvin – Plank statement of second law of thermodynamics.				201	
d.	What are topping and bottoming cycles?			203	
e.	Define entropy.	C	CO4 I	203	
	PART – C: (Long Answer Questions)	(6 x 5 = 30 Marks)			
Ans	swer ANY FIVE questions	Marks	[CO#] [PO#]	
3	3. The properties of a closed system change following the relation between pressure and volume as $pV = 3$, where p is in bar V is in m ³ . Calculate the work done when the pressure increases from 1.5 bar to 7.5 bar.		CO1	PO1 PO2	
4.	A fluid at a pressure of 3 bar and with specific volume of 0.18 m ³ /kg, contained in a cylinder behind a piston expands reversibly to a pressure of 0.6 bar according to a law, $p = C/V^2$, where C is a constant. Calculate the work done by the fluid on the piston.	(6)	CO1	PO1	
				PO2	
5	5. A fluid is confined in a cylinder by a spring loaded, frictionless piston so that the pressure in the fluid is a linear function of the volume (p=a + bV). The internal energy of the fluid is given by the following equation U=34+3.15pV where U is in KJ, p in up a, and V in cubic metre. If the fluid changes from an initial state of 170kPa, 0.03m3 to a final state of 400kPa, 0.06m3, with no work other than that done on the piston, find the direction and magnitude of the work.) L	CO2	PO2	
6.	Air flows steadily at the rate of 0.5 mkg/s through an air compressor, entering at 7m/s velocity,100kPa pressure and $0.95 \text{ m}^3/\text{kg}$ volume, and leaving at 5 m/s,700 kPa and $0.19 \text{ m}^3/\text{kg}$. The internal energy of the air leaving is 90 KJ/Kg greater than that of the air entering. Cooling water in the compressor jackets absorbs heat from the air at the rate of 58 KW. (a)Compute the rate of shaft work input to the air in KW.	(6)	CO2	PO1	
				PO3	
7.	A vessel of volume 0.04 m^3 contains a mixture of saturated water and saturated steam at a temperature of 250°C. The mass of the liquid present is 9 kg. Find the pressure, the mass, the specific volume and the enthalpy	(6)	CO3	PO1	
				PO2	
8.	Steam at 20 bar, 360° C is expanded in a steam turbine to 0.08bar. It then enters a condenser, where it is condensed to saturated liquid water. The pump feeds back the water into the boiler. Assuming ideal processes, find per kg of steams of the net work and the cycle efficiency.	(6)	CO3	PO1	
				PO2	
9.	e e		CO4	PO1	
	water has reached 90^{0} C, find (i) Entropy change of water (ii) Entropy change of heat reservoir (iii) Entropy change of the universe			PO3	
10.	2.5 kg of air at 6 bar, 90° Cexpands adiabatically in a closed system until its volume is		CO4	PO1	
	doubled and its temperature becomes equal to that of the surroundings which is at 1 bar, 5^{0} C. For this process determine (i) The maximum work (ii) The change in availability.	,		PO3	

For air take Cv = 0.718 KJ/kg K, R = 0.287 KJ/kg K.

--- End of Paper ---