AR 19 R

GIET UNIVERSITY, GUNUPUR – 765022

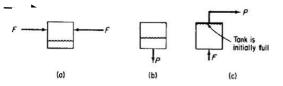
B. Tech (Third Semester – Regular) Examinations, December – 2020

BPCCH3040 – Chemical Process Calculations

(Chemical Engineering)

Maximum: 50 Marks

The figures in the right hand margin indicate marks.							
PART – A: (Multiple Choice Questions)				1 x 10 = 10 Marks)			
<u>Q.1</u>	. Answer ALL questions		[CO#]	[PO#]			
a.	The freezing point of water at 760 mm of Hg pr temperature what is is the freezing point of wate (i) -40	er (ii) -23	le CO1	PO2			
b.	(iii)40 Convert 2000 W to Kg f. m/s (i) 301 Kg f. m/s (iii) 328 Kg f. m/s	(iv)32 (ii) 201 Kg f. m/s (iv) 318 Kg f. m/s	CO1	PO2			
c.	(ii) Olo Hg it in SFor constant pressure process of an ideal gas the(i) Change in internal energy(iii) Change in enthalpy		CO2	PO4			
d.	A condensable vapor at its dew point in a non-c (i) Saturated gas (iii) Saturated liquid	condensable gas is a (ii) Saturated vapor (iv) None of the above	CO2	PO4			
e.	What is recycle ratio (i) Ratio of feed stream to mixed stream (iii) Ration of mixed stream to recycle stream	(ii) Ratio of recycle stream to mixed stream(iv) Ration of recycle stream to fresh feed stream	CO3	PO2			
f.	A conversion of a reactant in a process with rec the overall products is (i) Fractional yield (iii) Overall conversion		d CO3	PO1			
g.	(ii) Overall conversionWhat is an open system(i) Interaction of mass and energy takes place across system boundary(iii) Opened such that a steady state condition is maintaining	(ii) Interaction of energy takes place across system boundary(iv) None of the above	CO3	PO1			
h.	A stream blend off from the process to remove that might otherwise build up in the recycle stre (i) Main stream (iii) Recycle stream		ial CO3	PO1			
i.	An enthalpy change that does not involve a pha (i) Sensible heat (ii) Latent heat		CO4	PO4			
j.	Heat of reaction accompanying the formation o given temperature and pressure is (i) Standard heat of formation (iii) Heat of formation	f one mole of a compound from its element at (ii) Heat of combustion (iv) None of the above	a CO4	PO1			



 $(6 \times 5 = 30 \text{ Marks})$

Marks [CO#] [PO#]

Q.2. Answer ALL questions			[PO#]
a	A 25 L vessel is to contain 1.1g moles of nitrogen. The vessel can with stand a pressure of only	CO1	PO3
	20kPa above atmospheric pressure (taking into account a suitable safety factor). What is the maximum temperature to which the N_2 can be raised in the vessel in K		
b	. What is Raoult's law?	CO2	PO1
с	Define the term degrees of freedom?	CO2	PO1
d	Examine the following processes in the figure each box represents a system. For each state	CO3	PO4

d. Examine the following processes in the figure each box represents a system. For each state CO3 represent weather the process is steady state, unsteady state, or unknown condition. And also find weather the system is closed, opened, neither or both closed and opened. The wavy line represents the initial fluid level when the flow begins. In case (c) the tank stays full.

e. What is heat of formation and write heat of formation reaction for H_2SO_4 . CO4 PO1

PART – C: (Long Answer Questions)

Answer	ANY	FIVE	questions:
--------	-----	------	------------

3.	By electrolyzing mixed brine, a gaseous mixture is obtained at the cathode having the following composition by weight. $Cl_2=67\%$, $Br_2=28\%$ and $O_2=5\%$. Then (a) the calculate the composition of gas by volume as Cl_2 , Br_2 and O_2 respectively (b) Density of gas mixture in g/lit at $25^{\circ}C \& 740$ mm Hg & also specific gravity of the mixture.	(6)	CO1	PO3
4.	Explain the different ways of expressing composition of liquid mixture	(6)	CO1	PO1
5.	A mixture of acetone vapour and N ₂ contains 20% acetone by volume. Calculate a) the relative saturation and b) percentage saturation of the mixture at 20° C and 760 mm Hg. Vapour pressure of acetone at 20° C = 184.8 mm Hg.	(6)	CO2	PO3
6.	Define (a) Henry's law (b) Vapor pressure, (c) adiabatic saturation temperature (d) Antoine equation,	(6)	CO2	PO1
7.	 In the production of Sulphur trioxide 100 kmol of SO₂ and 100 kmol of O₂ are fed to a reactor. If the percent conversion of SO₂ is 80, the reaction is given below SO₂ + 0.5O₂ SO₃ 1. What is the mole % of O₂ in the product stream 2. What is the quantity of SO₂ in the product stream in kmol 3. What is the quantity of O₂ reacted in this process in kmol 4. What is the mole % of SO₃ in the product stream 	(6)	CO3	PO3
8.	A solution containing 53.8 g MgSO ₄ /100 g water is cooled from 353 K to 323 K. In the process 6% of the water evaporates. How many kg of MgSO ₄ .7H ₂ O crystals are obtained per 100kg of the original solution? At 323K the solution contains only 0.3 mass fraction of MgSO ₄ .	(6)	CO3	PO3
9.	Calculate the heat of formation of phenol (C_6H_5OH) crystals at 298.15K from its elements using the following data: Standard heat of formation of $CO_2 = -393.51$ KJ/mol. Standard heat of formation of $H_2O = -285.83$ KJ/mol. Heat of combustion of phenol crystals at 298.15K = -3050.25KJ/mol.	(6)	CO4	PO3
10.	Heat capacity of air can be expressed as $Cp= 26.693+7.365 \times 10^{-3} T$, Cp in J/mol ^O K and T in ^O K. Determine the heat given off by 1 mole of air when cooled at 1 atm from $500^{O}C$ to $-100^{O}C$. End of Paper	(6)	CO4	PO3