Registration No:						
otal Number of Pages:	2					

CPEC5401 venth Semester Examination – 2010

B.Tech.

Seventh Semester Examination – 2010 COMMUNICATION SYSTEMS

Time: 3 Hours Max. Marks: 70

Answer Question No.1 which is compulsory and any five from the rest.

The figures in the right-hand margin indicate marks.

- a) How data rate of the fibre related to total dispersion? (2×10=20)
 - Find the normalized difference between the core and cladding Δ is related to Numerical aperture (Σ) where η and η have their usual meaning).
 - c) Compare between meridional and skew rays in a fibre.
 - d) What you mean by 'acceptance angle' and 'acceptance cone' of a fibre?
 - e) Explain what you mean by polarization and its impact on satellite.
 - f) Why communication satellites use different frequencies for uplink and for downlink? Which one is higher and Why?
 - g) Contrast non-synchronous and synchronous satellites.
 - b) Define effective isotropic radiated power.
 - State the frequency range at which most of the direct broadcast satellite(DBS) operate.
 - What do you understand by noise Equivalent power? Explain property.
- a) Compare between step-index and graded-index fibre. (2)
 - b) Compute the number of modes in a 50/125 graded index fibre having a parabolic index 2.0, μ 1=1.496 and μ 2=1.46 at an operating wavelength of 820nm and 1300nm. Also calculate the number of modes in an equivalent step index fibre at both wave length.
 - c) Calculate the fractional refractive index change and the largest core size for single mode propagation of GRIN fibre having a parabolic profile with m1=1.465 and m2=1.46 and operating wavelength=1250nm. Also compute the effective refractive index for the lowest mode. (4)
- a) What are signal loss or attenuation mechanisms in a fibre? Describe.
 - b) A continuous 10 km long fibre link has a loss of 1.2 dB/km. i) Calculate the minimum optical power level that must be launched into the fibre to maintain an optical power level of 0.25 μ W at the receiving end. ii) What is the required input power if the fibre has a loss of 2.0 dB/km? Compare the results obtained in both case. (5)
 - Calculate the critical radius of curvature for a multimode 50/125 fibre with an NA of 0.2 operating at 0.85 μ m wavelength (μ I(core) = 1.5 and μ 2=1.48).

4.	a)	Exp	ain principle of operation of Laser Diode.	(.5)					
	b)	How much current would be developed in a PIN photodiode with a quantum efficient of 80%, which illuminate with a 80 \(mu\) W of 1300nm photon.							
	c)								
			e if $\lambda = 1500$ nm and $\Delta \lambda = 500$ nm. Given N(0.82 μ m) = 110 5 μ m)=15ps/(nm.Km). Symbols used have usual meaning.)ps/(nm.Km), (4)					
5.	a)	List	and describe the advantages of geosynchronous satellity	(3)					
	b)	A GEO satellite carries a C-band transponder which transmits 20 watts into an antenni with on axis gain of 32dB. An earth station is in the center of the antenna beam from the satellite at a distance 38,000km. For a frequency of 4.2 GHz calculate							
		i)	The incident flux density at the earth station in watts per meter a	nd dBW/m².					
		ii)	 The earth station has an antenna with a circular aperture 2.5m in diameter and aperture efficiency of 68%. Calculate the received power level in watts and in dBW, at the antenna out put. 						
		iii)	Calculate the on-axis gain antenna in decibels.						
		iv)	Calculate the free space path loss between the satellite and earth the link equation. Give the answer in dBW.	station using (7)					
6,	a)	What do you understand by multiple access in the context of satellite communication? Give brief idea about the three basic multiple access techniques. State the basic difference between multiple access & multiplexing. (6)							
	b)	Dr. w the block schematic diagram of a typical WDM network and explain in detail its principles of operation. (4)							
7.	a)		cribe in detail typical features of VSAT and DBS System.	(4)					
	b)	The	khz sampled a en multiplexed (6)						
		i)	Find the bit rate for each PCM signal.						
		ii)	The number of speech signals (as PCM) that could be sent by ear as a single access with no overhead. This is a TDM data steam.	ch earth station					
		iii)	The shortest frame time for any TDM scheme.						
8.	Wr	ite She	ort notes on any four	(2.5×4)					
	a)	link budget in Fibre optic link.							
	b)	Transponder							
	c)	Spread Spectrum							
	d)	Dis	persions.						

e)

Double Crucible Method.