Registration No.:									
Total number of printed pages – 2									B. Tech
									CRT 4402

Seventh Semester Examination – 2011 BIOREACTOR DESIGN AND ANALYSIS

Full Marks - 70

Time: 3 - Hours

Answer Question No. 1 which is compulsory and any five from the rest.

The figures in the right-hand margin indicate marks.

1. Answer the following questions:

2×10

- (a) Write down the rate equation with example.
- (b) What are the reasons for non-ideality in the flow pattern of bioreactors?
- (c) What is space time and space velocity?
- (d) Write down the mass balance equation for plug flow reactor.
- (e) What is the critical dilution rate? Write down the mathematical expression for it.
- (f) In a typical aerobic fermentation process, the diffusivity coefficient for oxygen into the fermentation broth is $8 \times 10^{-10} \text{m}^2/\text{s}$. The stagnant liquid film thickness was calculated to be 6 microns. Find the mass transfer coefficient for oxygen based on film theory.
- (g) Differentiate between plug flow reactor (PFR) and continuous stirred tank reactor (CSTR).
- (h) What is the function of sparger in a bioreactor?
- (i) Write down the relation between Q_{OUR} and Q_{SOD} .
- (j) What is aspect ratio of a fermenter?

What is meant by residence time distribution (RTD)? Describe RTD studies 2. of ideal non-ideal flow bioreactor. 4+6 A 10m³ fermenter is operated continuously with feed substrate concentration 3. 50kgm⁻³. The microorganism cultivated in the reactor has the following characteristics : $\mu_{max} = 0.56 h^{-1}$, $K_s = 0.75 \text{ kg/m}^3$, $Y_{xs} = 0.5 \text{ kg/kg}^{-1}$. Maintenance requirement and product formation are negligible. What feed flow rate is required to achieve 90% substrate conversion? (i) (ii) How does the biomass productivity at 92% substrate conversion compare with the maximum possible biomass productivity? What is plug flow reactor? Describe the basic design principles and kinetics 2+8 of PFR. Write short notes on the following: 5+5 5. Air lift fermenter (ii) Programmed Reactor Describe briefly the concept of design of a fermenter. What factor do you 6. consider as essential for a successful design and operation of a fermenter? 4+6 Write short notes on the following: 5+5 7. (a) Reactor stability (b) Biosensors In a fed-batch culture operating with intermittent addition of glucose solution, 8. values of the following parameters are given at time t=2h, when the system 2.5×4 is at quasi-steady state: $= 1000 \, \text{ml}$ Culture volume (V) = 100 gm glucose / liter Substrate concentration (S_o) = 0.1gm glucose / liter Limiting rate constant (Ks)

 $=30\,\mathrm{gm}$

Initial amount of biomass in the reactor (X₊⁰)