Registration No.:									
Total number of printed pages – 3								B. Tech	
•								P	CEC 4401A

Seventh Semester Examination - 2011

VLSI DESIGN

Full Marks - 70

Time: 3 - Hours

Answer Question No. 1 which is compulsory and any five from the rest.

The figures in the right-hand margin indicate marks.

Assume any data if not given in the question.

1. Answer the following questions:

2×10

- (a) What is the difference between full-custom and semi-custom design?
- (b) Draw the Gajski Y-chart for HDL based design.
- (c) What is FPGA?
- (d) What is channel length modulation?
- (e) What is the condition of strong inversion in MOSFET, explain in brief using energy band diagram?
- (f) What do you mean by substrate bias effect?
- (g) What are the MOS SPICE parameters?
- (h) What is the difference between enhancement and depletion type MOSFET?
- (i) What is noise margin and noise immunity? How are they related?
- (j) Draw the circuit of 1bit DRAM memory cell.
- (a) Explain the VLSI design flow using suitable diagram.

4

(b) What are the measures of design qualities of IC Design?

3

P.T.O.

	(c)	Explain how CAD tools are useful in VLSI Design. Name few of the tools
		and write its usage.
3.	(a)	What is the need of Scaling in IC Design? What are its advantages and
		disadvantages? Discus the types of Scaling. 4
	(b)	What are the short channel effects in MOSFET? 3
	(c)	Draw the Fabrication process steps of n-MOSFET using proper color coding.
4.	(a)	Derive the drain current equation of MOSFET in all modes of operation
		and draw the V~I characteristics with and without channel length modulation.
	(b)	Draw the energy ban'd diagram of three different operating modes of
		MOS system under external bias and derive the expression of maximum
		depletion width.
	(c)	Discuss the C~V characteristics of MOSFET during low frequency and
		high frequency operation.
5.	(a)	Discuss the operation of CMOS inverter by drawing its Voltage Transfer
		Characteristics (VTC) and show the various critical voltages in different
		regions of the VTC.
	(b)	Derive the expression of switching threshold voltage. 3
	(c)	Discuss the supply voltage scaling, power and area considerations in
		CMOS inverters. 3
6.	(a)	Consider a resistive-load inverter circuit with $V_{DD}=5V$, $k_n'=10\mu A/V^2$,
		$V_{T0}\!=\!0.8V\!,\;R_L\!=\!100k\Omega$ and $W/L\!=\!2.$ Calculate the critical voltages on the
		Voltage Transfer Characteristics (VTC) and find the noise margins of the
		circuit. 4
	(b)	Show that for an ideal symmetric CMOS inverter the $(W/L)_p$ is 2.5 times
		the $(W/L)_n$.
	(C)	What are the various leakage currents in CMOS inverter?
PC	EC 44	01A 2 Contd.

- 7. (a) Discuss the switching characteristics of CMOS inverter and derive the expressions of $\tau_{\text{PHL}}. \end{substitute} \begin{substitute}(10,0) \put(0,0){\line(0,0){100}} \put(0,0){\line(0,0){100}$
 - (b) What is sheet resistance and what is its use in VLSI?
 - (c) What are the delay models exist for the estimation of interconnect delay?

 Explain any one of the model.
- (a) Implement the Boolean function Z = A(B+C)+D using pseudo nMOS logic. Find an equivalent CMOS inverter circuit for simultaneous switching of all inputs, assuming that (W/L)_p=10 for all p-MOS transistors and (W/L)_p=5 for all n-MOS transistors.
 - (b) Implement the two input XOR gate using pass transistor logic and transmission gate.
 - (c) Implement the D-latch circuit using CMOS and draw its timing diagram showing setup time and hold time.