Registration No.:						
Total number of printed pages – 3						B. Tech
						DECS 5/03

Seventh Semester Examination – 2011 REAL-TIME SYSTEMS

Full Marks - 70

Time: 3 Hours

Answer Question No. 1 which is compulsory and any five from the rest.

The figures in the right-hand margin indicate marks.

Answer the following questions :

2×10

- (a) When a system is said to be "reat time system"?
- (b) What is a safety critical system ? VNU?
- (c) What is a clock-driven scheduler and how it is different from the eventdriven scheduler?
- (d) What are the shortcomings of the EDF real time task scheduling algorithm?
- (e) Under what circumstances the unbounded priority inversion occur?
- (f) What are the two most important problems of Priority Inheritance Protocol (PIP)?
- (g) Is the 2PL-WP protocol used in concurrency control in real-time databases, free from deadlocks?
- (h) In a logical ring, is it necessary that the order of nodes in the ring must be the same as their order in the physical network?
- (i) Specify the names of 5 contemporary real-time operating systems.
- (j) Can a task undergo Chain Blocking in Highest Locker Protocol (HLP)?
- (a) Draw the block diagram of the basic model of a real-time system, showing
 its important hardware components and their interactions. Explain the role
 of the different components.
 - (b) Identify the key differences between hard real-time, soft real-time and firm real-time systems. Give atleast one example of real-time tasks corresponding to these three categories. Identify the timing constraints in your tasks and justify why the tasks shouldbe categorized in to the categories you have indicated?

- 3. (a) What do you understand by **scheduling point** of a task scheduling algorithm? How are the Scheduling points determined in (i) clock-driven, (ii) event-driven, and (iii) hybrid schedulers? How will your definition of **scheduling points** for the clock-driven scheduler change when **self-suspension** of tasks are taken in to account?
 - b) Consider a real-time system which consists of three tables T₁, T₂, and T₃ which have been characterized in the table below.

ask Phase (mSec)		Execution Time (mSec)	Relative Deadline (mSec)	Period (mSec)	
Γ,	20	10	20		
Γ,	40	10 .	50	50	
T ₃	70	20	80	80	

If the tasks are to be scheduled using a table-driven scheduler, what is the length of time for which the scheduler have to be stored in the pre-computed schedule table of the scheduler?

- 4. (a) Briefly explain while scheduling a set of hard real-time periodic tasks, why RMA can not achieve 100% processor utilization without missing task dead-lines?
 - (b) Determine whether the following set of periodic real-time tasks is schedulable on a uniprocessor using RMA. Show the intermediate steps in your computation. Is RMA optimal when the task deadlines differ from task periods? 5

Task	Start-Time (mSec)	Processing-Time (mSec)	Period (mSec)	Deadline (mSec)	
T ₁ 20		25	150	100	
T ₂	40	7	40	40	
T ₃	60	10	60 .	50	
Γ ₄ 25		10	30	20	

- 5. (a) Explain the operation of priority ceiling protocol (PCP) in sharing critical resources among Real-time tasks. Explain how PCP is able to avoid dead-lock, unbounded priority inversion, and chain blockings?
 - (b) A set of hard real-time periodic tasks need to be scheduled on a uniprocessor using RMA. The following contains the details of these periodic tasks and their use of three non-preemptable shared resources. Can the tasks T₂ and T₃ meet their respective deadlines, when priority ceiling protocol (PCP) is used for resource scheduling?

Task	p _i	e	R ₁	R ₂	R ₃
T ₁	400	30	15	20	-
T ₂	200	25		20	10
T ₃	300	40	-	-	-
T ₄	250	35	10 4	10	10
T ₅	450	50	-	-	5

 $\mathbf{p_i}$ indicates the the period of task $\mathbf{T_i}$ and $\mathbf{e_i}$ indicates its computation time. The entries in the $\mathbf{R_1}$, $\mathbf{R_2}$, and $\mathbf{R_3}$ columns indicate the time duration for which a task needs the named resource in non-present the task needs the named resource, it does not exclude the same or any other resource.

- 6. (a) Explain why algorithms that can be satisfactorily used to schedule real-time tasks on multi-Processors often are not satisfactory to schedule real-time tasks on distributed systems, and vice versa?
 - (b) Describe the focused addressing and bidding and the buddy schemes for running a set of real-time tasks in a distributed environment? Compare these two schemes with respect to communication overhead and scheduling proficiency.
- 7. (a) Explain how a real-time database differs from a conventional database. Illustrate a few practical applications requiring the use of a real-time database.
 - (b) Why the traditional 2 phase locking (2PL) based concurrency control protocol may not be suitable for use in real-time databases? Explain how the traditional 2PL protocol can be extended to make it suitable for use in real-time database applications.
- 8. (a) What do you understand by the term "hard real-time communication support by a network"? Give two example applications where hard real-time communication support from the underlying communication network is required. Give an overview of how hard real-time communication can be supported by a network.
 - (b) Explain the features of any commercial real-time operating system you have studied.