Registration No.:										
Total number of printed pages – 3										B. Tech
										EECS 6401

Seventh Semester Examination – 2011

INTRODUCTION TO DIGITAL SIGNAL PROCESSING

Full Marks - 70

Time: 3 - Hours

Answer Question No. 1 which is compulsory and any five from the rest.

The figures in the right-hand margin indicate marks.

Answer the following questions :

2×10

- (a) State whether the following system is linear or not y(t) = 2 + x(t).
- (b) State whether a unit ramp sequence is a power signal or an energy signal.
- (c) State whether the following signal is periodic or not, if periodic, find the fundamental period : $x(n) = \cos\left(\frac{\pi}{3}n\right) + \sin\left(\frac{3\pi}{4}n\right)$.
- (d) Find the z-transform of the signal x(n) = u(-n). Also state the ROC.
- (e) Write down the relationship between DFT and z-transform.
- (f) What do you mean by twiddle factor and write down its two properties.
- (g) How many complex additions and multiplications are required to compute 64-point DFT via decimation-in-frequency FFT algorithm?
- (h) Write down two main advantages of FIR filter over IIR filter.
- (i) Why impulse-invariant method is not preferred in the design of IIR filter other than Low Pass Filter?
- (j) Give the bilinear transform equation between s-plane and z-plane.

- 2. (a) What is the magnitude of an odd function at index n = 0.
 - (b) Derive a closed-form expression for the convolution of x(n) and h(n) where $x(n) = 2^n u(n)$ and $h(n) = (1/2)^n u(n)$.
 - (c) Consider the following DTS whose output y(n) is related to the input x(n) as $y(n) = x(n^2)u(n)$. Determine whether or not the above systems are (i) linear, (ii) time-invariant, (iii) static, (iv) stable, (v) causal.
- 3. (a) Give the Direct-form II structure of the system described by the difference equation given by $y(n) + \sum_{k=1}^{N} a_k y(n-k) = \sum_{k=0}^{M} b_k x(n-k)$ for N > M. 4
 - (b) Determine the total solution of the difference equation

 $y(n) = \frac{5}{6}y(n-1) - \frac{1}{6}y(n-2) + x(n)$ where the forcing function is

$$x(n) = \left(\frac{1}{2}\right)^n u(n).$$

- 4. (a) Find the z-transform of the following signal $x(n) = \left(\frac{1}{2}\right)^n \left[u(n) u(n-10)\right]$.
 - (b) Find the inverse z-transform of $X(z) = (1 + bz^{-1}) \log (1 + az^{-1}), |z| > |a|$. 7
- 5. (a) Prove that $DFT[x^*(n)] = X^*(N-k)$.
 - (b) Find the linear convolution $y(n) = x(n)^*h(n)$, where $x(n) = \{0.5, 2, -1.5, -1, 0, 0.75, 3, 2, 1.5, 1, -0.75, 2\}$ and $h(n) = \{1, 2, -1\}$ using overlap-add method.
- 6. (a) For the analog transfer function $H(s) = \frac{2}{(s+1)(s+2)}$, determine H(z) using impulse invariance method. Assume T = 1 sec.
 - (b) Obtain the cascade and parallel realizations for the system function given

by
$$H(z) = \frac{1 + \frac{1}{4}z^{-1}}{\left(1 + \frac{1}{2}z^{-1}\right)\left(1 + \frac{1}{2}z^{-1} + \frac{1}{4}z^{-2}\right)}$$
.

FECS 6401

- 7. Prove the Decimation-In-Time Radix-2 FFT algorithm with neat Butterfly diagram (Consider N = 8).
- 8. (a) Write a short note on Gibbs phenomenon.

3

7

(b) Design an ideal Low Pass Filter with a frequency response

$$H_{d}(e^{j\omega}) = \begin{cases} 1, & -\frac{\pi}{2} \le \omega \le \frac{\pi}{2} \\ 0, & \frac{\pi}{2} \le |\omega| \le \pi \end{cases}.$$

Find the values of h(n) for N = 9. Also, find the frequency response.