						PE	EE 5402B	
Total number of printed pages – 3						B. Tech		
Registration No. :						*		

Seventh Semester Examination – 2011 INDUSTRIAL AUTOMATION AND CONTROL

Full Marks - 70

Time: 3 Hours

Answer Question No. 1 which is compulsory and any five from the rest.

The figures in the right-hand margin indicate marks.

1. Answer the following questions:

2×10

- (a) What are the principle characteristics of the first order process, and what is the effect of time delay in process control system 25
- (b) Compare P, PI, and PD controllers in terms of their transient and steady state performance.
- (c) Which is the single mode controller that cannot be used alone and why?
- (d) What is the advantage of using substitution method over Routh's criterion for finding stability?
- (e) List the advantages and disadvantages of feed forward and feedback control configuration.
- (f) What are the advantages of cascade control configuration?
- (g) The temperature of a furnace is to be controlled. The rate of flow of fuel to the furnace is manipulated variable. Pressure of the fuel is secondary variable. Draw a cascade control scheme for this.
- (h) Compare pneumatic controllers with hydraulic controllers in terms of speed, power output, safety and effect of temperature variations.
- (i) Why do electronic controller's outputs form pneumatic and hydraulic controllers in terms of speed, size and flexibility?
- (j) What is the difference between relay diagram and ladder diagram?
- 2. (a) Using Zigler and Nichols method of tuning, find tuned parameters of PID controller for process having transfer function as $\frac{e^{-0.5s}}{(s+1)(2s+1)}$. All other elements in control loop have unity transfer function.

P.T.O.

- Using direct substitution method, find stability range of K_p for the system $\frac{4}{(10\,\mathrm{s}^3+18\,\mathrm{s}^2+8\,\mathrm{s}+1)}$ and feedhaving forward path transfer function as 5 back path element transfer function as unity.
- (a) Consider the error voltage is given by the following relation: 3.

$$E_p = t\%$$

$$(0-1 sec)$$

$$E_{p} = 1\%$$

$$(1-3 sec)$$

$$E_p = -\frac{1}{2}t + 2.5\%$$
 (3-5 sec)

Find the controller output for a three mode controller, which produces an output with $K_p = 5$, $K_i = 0.5 \text{ sec}^{-1}$ and $K_d = 0.5 \text{ sec}^{-1}$ offset $P_0 = 20\%$.

Error curve rises linearly to 1% in 0.5 min and remain fixed at 1% K_p is 2 and K_d is 1 min and $K_i = 0.5 \text{ min}^{-1}$ and offset $P_0 = 0\%$. Find the controller output at t = 0, 0.5, 1.0 min. When controller is (i) PD mode, (ii) PI mode.

5

- The transfer function of a process is $\frac{4}{(s+2)}$. Measuring and controller elements have unity transfer function. Error is sampled at a rate of 10 samples per second. Sample error is given to ZOH having transfer function $\frac{1-e^{-sT}}{r}$ and output of ZOH is given to the process. Find the output continuous and 6 discrete system at t = 0, 0.1, 0.5 sec.
 - Draw cascade control scheme for a jacket reactor in which hot oil is supplied to the jacket. Reactor temperature is the primary variable and jacket variable is the secondary variable.
- (a) Explain the cavitations and flashing phenomena with the help of a diagram 5. in case of a control value.
 - A 1.5 inch control valve has following specification:

At 40% valve opening, $C_v = 13.3$. At 30% valve opening, $C_v = 9.6$. At 80% valve opening, $C_v = 25.9$. Calculate C_v at 90% value opening when control valve has linear characteristics.

6.	(a)	Three tanks containing oil have to be monitored continuously. Desi warning system to light up whenever two or more tank are empty. A	_
		switch at the bottom of each tank get's energized whenever tank is for empty?	
	(b)	Design a 1:4 DMUX using PLC lagder diagram.	5
7.	(a)	Draw a hierarchical DCS structure and splain function at each level.	5
	(b)		in a
8.	Writ	te notes on any two:	5×2
	(a)	Override control scheme	
	(b)	Position and velocity algorithm in case of PID controllers	
	(c)	Two position and Multi position control mode.	