Total Humber of pr	iiiicu pa	iges	0				-	EC 5/01B
Total number of pr	intad n	2000	2			-		B. Tech
Registration No.:								

Seventh Semester Examination – 2011 ADVANCED CONTROL SYSTEM

Full Marks - 70

Time: 3-Hours

Answer Question No. 1 which is compulsory and any five from the rest.

The figures in the right-hand margin indicate marks.

1. Answer the following questions:

2×10

- (a) Show the difference between continuous-time analog signal and the continuous-time quantized signal. Is there are difference between sampled signal and quantized signal?
- (b) Explain the necessity of a HOLD in the sampled data control system.
- (c) What is Aliasing in connection with sampling and why it occurs?
- (d) Derive the condition for complete state controllability of a linear time invariant discrete-data system.
- (e) Explain and illustrate the phenomenon of Jump Resonance in non-linear systems.
- (f) Classify equilibrium points and illustrate.
- (g) Explain how a state observer helps in pole placement of closed loop poles.
- (h) Prove the non uniqueness of State Variables.
- (i) What interence you get by mapping of the left half of s-plane into the z-plane? Explain.
- (j) What do you understand by Eigenvector? Explain.
- (a) (i) State and prove the final value theorem of z-transform.

3

2

(ii) If x(t)=0 for t<0 and x(t) has the z-transform x(z), prove $Z[x(t-nT)] = z^{-n}X(z)$.

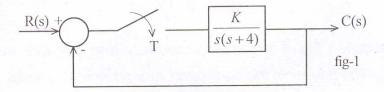
P.T.O.

(b) Find the inverse z-transform of the followings:

(i)
$$X(z) = \frac{Z(z+1)}{(z-1)^3}$$

(ii)
$$X(z) = \frac{z^2}{(z-1)^2(z-e^{-aT})}$$

3. (a) Derive the range of values of K for the given sampled-data control system shown in fig.-1 with a sampling period $T = \frac{1}{4}$ second, to be stable. Use bilinear transfer motion.



(b) A linear discrete-time system is represented by a pulse transfer function $\frac{Y(z)}{U(z)} = \frac{b_0 + b_1 z^{-1} + b_2 z^{-2} + \dots + b_n z^{-n}}{1 + a_1 z^{-1} + a_2 z^{-2} + \dots + a_n z^{-n}}$

Determine the state-space representation in controllable cononical form.

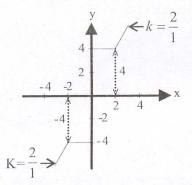
- 4. (a) Find the state model for the system discribed by $T(s) = \frac{-5s^2 + 4s 12}{s^3 + 6s^2 + s + 3}$.
 - (b) Using Laplace transforms method, obtain STM for $A = \begin{pmatrix} 0 & 1 \\ -20 & -9 \end{pmatrix}$. 5
- 5. (a) Determine the state feedback gain matrix K of the system:

$$\dot{X} = AX + Bu$$
; y=Cx, where A= $\begin{pmatrix} 0 & 1 \\ 20.6 & 0 \end{pmatrix}$, B= $\begin{pmatrix} 0 \\ 1 \end{pmatrix}$, C= $\begin{bmatrix} 1 & 0 \end{bmatrix}$, such that the closed-loop poles are at $-1.8 \pm j2.4$.

(b) Determine the transfer function of the system define by:

$$\dot{X} = AX + Bu$$
; y=Cx, where $A = \begin{pmatrix} -1 & 0 & 1 \\ 1 & -2 & 0 \\ 0 & 0 & -3 \end{pmatrix}$, $B = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$, $C = \begin{bmatrix} 1 & 1 & 0 \end{bmatrix}$.

- (a) What is a limit cycle? Explain the stability of Limit Cycle which may exhibit in non-linear system.
 - (b) (i) Derive the expression for describing function of the non linearity whose output/input characteristic is shown in fig.-2(a).
 - (ii) Determine the amplitude and frequency of limit cycle for the system as shown in fig.-2(b) with the same non-linearity as in fig.-2(a).



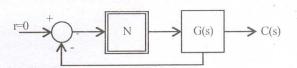


fig.-2(b): A closed loop n-l system and N=D.F of the n.l.e. shown in fig.-2(a).

Where G(s)=
$$\frac{2}{s(s+1)(s+2)}$$

fig.-2(a): Input/Output characteristic of a n.l.e.

- 7. (a) Draw the Phase Trajectory of a system described by $x^2 + xx^2 + x = 0$. Given the initial condition $x_0 = +\sqrt{2}$, y_0
 - (b) Investigate the stability of the system described by :

 $\begin{bmatrix} \dot{x_1} \\ \dot{x_2} \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ -1 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$. Use lyapunov's method of stability. You may take a

Lyapernov function $V(x) = x_1^2 + x_2^2$.

4

8. Answer any four of the followings:

 2.5×4

- (a) A control system is described by $\hat{x} + f(\hat{x}) + g(x) = 0$. Suggest and illustrate a suitable method of construction of Phase Trajectory.
- (b) How do you linearize the non linear differential equation around the equilibrium point? Explain and illustrate.
- (c) Explain the procedure for Jury's stability Test.
- (d) Explain the concept of Controllability and Observability.
- (e) Explain how the state equation of linear continuous time system is discretized to get a discrete-time state equation.

3