Registration No. :											
--------------------	--	--	--	--	--	--	--	--	--	--	--

Total number of printed pages - 2

B. Tech

PCCH 4402

Seventh Semester Examination – 2013 FUNDAMENTALS OF BIOCHEMICAL ENGINEERING

BRANCH: CHEM

QUESTION CODE: C-197

Full Marks - 70

Time: 3 Hours

Answer Question No. 1 which is compulsory and any **five** from the rest.

The figures in the right-hand margin indicate marks.

1. Answer the following questions:

2×10

- (a) What is enzyme specificity? What are the various types of enzyme specificity.?
- (b) What are the various applications of heat transfer in bio-processing?
- (c) Why sterilization is required for bio-processing?
- (d) What are the different methods of cell disruption?
- (e) What do you mean by critical and non-critical parameters for a fermentation process?
- (f) What are the general requirements of mentation process?
- (g) Describe the effects of gas velocity on mass transfer rate in fermentation broths.
- (h) Compare the absolute air filter and fibrous type air filter for sterilization of air.
- (i) Find the g-number of a centrifuge with an effective radius of 10 cm and rotating at a speed of 30 rps.
- (j) Describe the growth associated and non-growth associated product formation in fermentation process.

2.	(a)	Briefly explain different methods of continuous sterilization.	6
	(b)	What are the advantages and disadvantages of continuous sterilization?	4
3.	(a)	Derive Michaelis-Menten equation for enzyme kinetics from first principle). 5
	(b)	What are Lineweaver-Burk plot and Langmuir plot and how it can be used calculate Michaelis-Menten constant?	to 5
4.	(a)	What are the different methods of controlling fermentation process condition? Describe them briefly.	5S 7
	(b)	Write some applications of mass transfer in bio-processing.	3
5.	(a)	What is solid state and submerged fermentation and give some application of both?	ns 6
	(b)	Describe about synthetic medium and crude medium.	4
6.	(a)	Describe the process of oxygen transfer methodology from the air bubble the cell or cluster of cells in fermentation broths.	to 6
	(b)	What are the various factors affecting oxygen transfer rate in fermentation process?	on 4
7.	Wha	at are the various effluent treatment methods 2 Describe them briefly.	10
8.	Writ	te short notes on any two:	(2
	(a)	Activated sludge treatment	
	(b)	Immobilization of enzyme	
	(c)	Plate-and-frame filter press	
	(d)	Chromatography.	