Registration No.:						
Total number of pri	inted page	es-3				B. Tech
						PCEC 4401

Seventh Semester Examination - 2013

VLSI DESIGN

BRANCH: EC, IEE, AEIE, ETC

QUESTION CODE: C-291

Full Marks - 70

Time: 3 Hours

Answer Question No. 1 which is compulsory and any five from the rest.

The figures in the right-hand margin indicate marks.

1. Answer the following questions:

2×10

- (a) What do you mean by threshold voltage of MOSFET? Write down the expression for threshold voltage of a NMOS and PMOS.
- (b) Design the function F = (A B + C) using CMOS logic and find out the equivalent (W/L) ratios considering symmetrical MOSFETS.
- (c) Realize a 2-input XOR gate using CMOS transmission gate.
- (d) What is surface inversion? Draw its energy band diagram
- (e) Draw the circuit of 1-bit DRAM cell.
- (f) What is I_{DDQ} testing?
- (g) Design the pull up network of a 2-input CMOS XQR gate.
- (h) How many devices can be fabricated on a 4 inch Silicon wafer by using 2μm technology?
- (i) A logic gate has $V_{OH} = 5V$, $V_{OL} = 0.2V$, $V_{IH} = 0.5V$ and $V_{IL} = 0.8V$. Calculate the noise margins.
- (j) Draw the stick diagram of a two input CMOS NAND gate.

- 2. (a) Derive and calculate the switching threshold voltage V_{th} of the two input CMOS NOR gate with the following parameters : 5 $(W/L)_p = 4, \ (W/L)_n = 1, \ V_{T0n} = \left|V_{T0p}\right| = 0.7V, \ \mu_n C_{ox} = 40 \,\mu\,A/V^2, \ \mu_p C_{ox} = 20 \,\mu\,A/V^2 \ and \ V_{DD} = 5V.$
 - (b) Derive the current equation using the gradual channel approximation theory for a p-channel MOS transistor operating in the linear region, i.e, for V_{SG} + V_{TP} > V_{SD}.
 5
- 3. (a) Calculate the values of V_{OH} , V_{OL} , V_{IL} , V_{IH} and noise margins for a saturated enhancement type load NMOS inverter circuit. Given $V_{DD} = 5V$, $V_{T} = V_{T0} = 0.8V$ and $(K_{driver}/K_{load}) = 10$.
 - (b) Design a circuit described by the function $Y = \overline{\{A \cdot (B+C) \cdot (D+E)\}}$ using CMOS logic. Also find the equivalent CMOS inverter circuit for simultaneous switching of all inputs assuming that $(W/L)_p = 5$ for all PMOS transistors and $(W/L)_n = 2$ for all NMOS transistors.
- Measured voltage and current data for a MOSFET is given below:

V _{GS} (V)	V _{DS} (V)	V _{SB} (V)	I _D (μΑ)		
3	3	0	97		
4	4	0	235		
5	5	0	235 433		
3	3	RAL 1.3	59		
4	4/5	32	173		
5	5,	3/2/	347		

Determine the type of device, mode of operation and calculate the parameters k, V_{T0} and γ . Given $\phi_F = -0.3 \, V_{T0}$

- 5. (a) Implement the following Boolean expression Z = {A · (B + C) · D} using dynamic CMOS logic. Draw the timing diagram of precharge and evaluation cycle. Explain the cascading problem in dynamic CMOS logic and how does it overcome?
 - (b) Implement the above Boolean function using Domino CMOS logic and Pseudo NMOS logic.

- (a) Draw the energy band diagram of three different operating modes of MOS system under external bias and derive the expression of maximum depletion width.
 - (b) Draw the circuit diagram and corresponding stick diagram of a 3 input NAND gate using CMOS technology.
 5
- 7. (a) Calculate the change in the noise margin of a resistive load inverter, if load resistance changes from $200 \text{ k}\Omega$ to $300 \text{ k}\Omega$. The process parameter for driver transistor are $K_n = 50 \,\mu\,\text{A/V}^2$, $V_{TO} = 1 \,\text{V}$ and $V_{DD} = 5 \,\text{V}$.
 - (b) Derive an expression for the high to low propagation delay (τ_{PHL}) of a CMOS Inverter.
- 8. Write short notes on any two:

5×2

- (a) Flash memory
- (b) FPGA
- (c) Current monitoring IDDQ testing
- (d) MOS Capacitances