Registration No. :											
--------------------	--	--	--	--	--	--	--	--	--	--	--

Total number of printed pages – 3

B. Tech

CPEC 5403

Seventh Semester (Special) Examination – 2013 VLSI DESIGN

BRANCH CODE: AEIE, EC, ETC, IEE

QUESTION CODE: 469

Full Marks - 70

Time: 3 Hours

Answer Question No. 1 which is compulsory and any five from the rest.

The figures in the right-hand margin indicate marks.

1. Answer the following questions:

2×10

- (a) State the four different types of CMOS process you are familiar with.
- (b) With a suitable diagram show the different layers in a MOS transistor.
- (c) What is stick diagram and what are the uses of stick diagram?
- (d) Define threshold voltage in CMOS.
- (e) What is channel-length modulation?
- (f) What are two components of power dissipation? Explain in brief.
- (g) What are pull-up and pull-down devices CMOS circuits?
- (h) What is the structural gate-level modeling in a CAD tool/like VHDL or Verilog?

CENTRAL LIB

- (i) State the different types of VLSI design styles.
- (j) What is meant by fault models? Give some examples of fault models.
- 2. (a) Explain the VLSI design flow with a neat diagram.

5

- (b) What are noise margins? Explain how do noise margins change with increase in the p-transistor width relative to that of n-transistor.
- (a) Consider a non-inverting buffer shown in Figure Q3(a) below that uses an NMOS to pull up and a PMOS to pull down. The NMOS and

PMOS transistors have a threshold voltage V_{th} = 0.2V. The supply voltage is V_{DD} = 1.2 V. Determine the transfer characteristics and the regions of operation of the non-inverting buffer.

Figure Q3(a) TRAL LIBRARY

Figure Q3(b)

- (b) Why is the cross coupling and PMOS-pull-ups included in the CPL gate shown in Figure Q3(b) above? What problem are they trying to solve? 5
- Derive the CMOS inverter DC characteristics and obtain the relationship for output voltage at different region in the transfer characteristics.
- (a) Draw a transistor level schematic for a CMOS 4-input NOR gate and then sketch a stick diagram for the same.
 - (b) For a CMOS NOR2 gate, prove that if the threshold voltages $V_{Th,n} = \left|V_{Th,p}\right|$ and $k_n = \frac{1}{2} \mu_n C_{ox} \left(\frac{W}{L}\right)_n = k_p = \frac{1}{2} \mu_p C_{ox} \left(\frac{W}{L}\right)_p$ then, the threshold voltage

of the NOR gate is given by
$$V_{th}$$
 (NOR2) = $\frac{\left(V_{DD} + V_{Th,n}\right)}{3}$.

- (a) Discuss the charge sharing problems in VLSI circuits. State various circuit techniques in domino CMOS circuits for solving charge sharing problems and explain any one of them.
 - (b) What is pass transistor logic? Discuss its limitations and design an n-MOS pass transistor which passes weak '1' and strong '0'.

(a) Consider the two VHDL processes below. How do they differ in terms of 5 functionality? Be specific. Program 1: **PROCESS** BEGIN WAIT UNTIL (Clock'EVENT AND Clock = '1'); IF Reset = '1' THEN $Q2 \le '0'$: ELSE $Q2 \leq D$; END IF; END PROCESS; Program 2: PROCESS (Reset, Clock) **BEGIN** IF Reset = '1' THEN Q3 <= '0';ELSEIF (Clock'EVENTAND Clock ')THEN Q3 <= D: END IF: END PROCESS: 5 (b) Explain BIST with a neat diagram. Write short notes any two of the following: 5×2 8. (a) P-well process technology IDDQ testing (b) (c) CMOS D Latch

(d) Pass Transistor Logic.