Registration No. :						
			i			

Total number of printed pages – 2

B. Tech

PCME 4403

Seventh Semester (Special) Examination – 2013 MECHANICAL MEASUREMENT AND CONTROL

BRANCH: MECH

QUESTION CODE: D 482

Full Marks - 70

Time: 3 Hours

Answer Question No. 1 which is compulsory and any five from the rest.

The figures in the right-hand margin indicate marks.

1. Answer the following questions:

2×10

- (a) What is the difference between +ve and –ve feed back system? Which one is stable.
- (b) Define a spring mass system with damping and differential equation and Laplace Transform of the equation with initial conditions.
- (c) Which parameters of an electrical circuit is analogous to mass, velocity, acceleration and displacement?
- (d) Define the range of high pressure and low pressure.
- (e) What is the utility of Laplace Transform ? Find the Laplace Transform of an Impulse function.
- (f) On the s- plane show the region for stability. Why this region is stable?
- (g) What is the advantage of Orifice meter for flow measurement?
- (h) What are the different dissimilar materials used in thermocouples? What is a P-type thermocouple?
- (i) What is static and dynamic error?
- (j) What is the time domain response curve?
- 2. (a) Explain Routh's Stability Criteria. The polynomial:

10

$$A(s) = s^7 + 2s^6 + 3s^5 + 4s^4 + 3s^3 + s^2 + s + 4$$

Determine the stability criteria by using above criteria. Discuss.

- 3. (a) Differentiate between a Variable area flow measurement with a constant area flow measurement 3
 - (b) A rotameter is calibrated for metering a liquid of density 1050 kg/m³ and a scale ranging from 1 to 200 litre/min.lt is intented to use this meter for metering the flow of gas of density 1.25 kg/m³ with a flow range from 20 to 2500 litre/min.Determine the density of new float, if the original has a density of 2000 kg/m³. The shape and volume of the float is assumed to be same.
- With a neat sketch explain the working principle of a Mc Leod gage and Pirani Gage.
- With a neat sketch explain the working principle of Total Radiation Pyrometer and Optical Pyrometer.
- 6. (a) What are the Laws of Thermocouple?
 - (b) Explain Seebeck, Peltier and Thomson effect.
 - (c) Explain the working of Piezo-electric pressuret ansducer.
- Derive the Gage Factor for a Resistance strain gage and sensitivity of a High Pressure Gage.
- 8. Write short notes on the following:
 - (a) Accuracy and Precision
 - (b) Uncertainty and Random error
 - (c) Sensitivity and Resolution
 - (d) Bode plot.

4

3

3

 2.5×4