Registration No. :					,			,				
Total number of printed pages – 3										B. Tech		
		OHE									FECS	6401

Seventh Semester (Special) Examination - 2013

INTRODUCTION TO DIGITAL SIGNAL PROCESSING

BRANCH: CSE, IT

QUESTION CODE: D 453

Full Marks - 70

Time: 3 Hours

Answer Question No. 1 which is compulsory and any five from the rest.

The figures in the right-hand margin indicate marks.

Answer the following questions :

2×10

(a) What is sampling theorem? Find the Niquist rate of sampling of the signal given below:

DL LIBRAPI

- $25 \sin(2500\pi t) \times 3\cos(400\pi t) \cos(1750\pi t)$
- (b) What is unit of Z^{-1} ?
- (c) State the difference between IIR and IR filter.
- (d) What is even and odd signal? Explose a signal X in terms of even and odd component.
- (e) How many real multiplication and addition is required for computation of N-point DFT?
- (f) What is linear phase characteristics of FIR filter?
- (g) What are advantages of FFT over DFT?
- (h) Give the mapping of S-plane to Z-plane using bilinear transformation technique.

A casual signal is represented as, (i)

$$X(n) = \{2, 1, 0, \dots, n\}$$

Express the signal as the sum of impulse function $\delta(n)$.

- What is Gibbs phenomenon? (i)
- Find out the impulse response of the system 2. (a)

5

$$y(n) = 0.5y(n-1) + 0.2y(n-2) + 0.4x(n) + x(n-1)$$

Locate the poles and Zeros. Is the system stable?

Determine the steady state response of the system described by 5 (b) h(n) = 0.5 y(n-1) + y(n-2) + 0.25 x(n-1)

When a unit step function is applied to the system.

- Using Z-transform, find the step response of the system described by 5 3. (a) v(n) = v(n-1) + 2x(n-2)
 - Find inverse Z-transform of the casual signal x(n) whose Z-transform is 5 given as

$$X(z) = \begin{pmatrix} 1 & 1 \\ 1 - 1.5z^{-1} - 0.5z^{-2} \end{pmatrix}$$

Convert the analog fitter with system function

$$H(s) = \frac{s + 0.1}{(s + 0.1)^2 + 9}$$

Into a digital IIR filter using impulse invariance transformation method. The digital filter is to have resonant frequency of $\frac{\pi}{2}$. 5

- Bring out mapping between ω and Ω . Where it is used? 5 (b)
- 5 Consider the casual system 5. (a)

Y(n) = 0.9y(n-1) - 0.08y(n-2) + x(n) + 0.3x(n-1)

Obtain a cascade structure of the system

(b) Explain the design of linear phase FIR filters using window technique. 5

Determine the coefficient of linear phase FIR filter length M=15, which has 6. a symmetric unit sample response and frequency response that satisfies the condition 10

$$Hr\left(\frac{2\pi K}{15}\right) = 1$$
 $K = 0,1,2,3$
 $= 0.4$ $K = 4$
 $= 0$ $K = 5,6,7$
tion in frequency FFT algorithm.

- 7. Explain Decimation in frequency FFT algorithm. (a)
 - 1,1,1} using Decimation in time Find 4-pont IDFT of the signal, $X(k) = \{1, ..., X(k)\}$ (b) algorithm. 5
- Write short notes on any two of the following: 8.
 - (a) Stability of LTI system
 - (b) Overlap-save method
 - Circular convolution (c)
 - Use of DFT in linear filtering. (d)