Registration No.:						
			 11 - 100	 		

Total number of printed pages – 2

B. Tech PCEE 4401

Seventh Semester (Special) Examination – 2013 ELECTRICAL POWER TRANSMISSION AND DISTRIBUTION

BRANCH: EEE

QUESTION CODE: D 384

Full Marks - 70

Time: 3 Hours

Answer Question No. 1 which is compulsory and any five from the rest.

The figures in the right-hand margin indicate marks.

Answer the following questions :

2×10

- (a) Why is the effect of ground on the capacitance of a line negligible?
- (b) What is meant by grading of cables?
- (c) What is equivalent spacing of a 3 phase line? What sits significance?
- (d) How is string efficiency of overhead line sulators improved?
- (e) Why long lines usually need reactive power comments ation equipments for proper operation?
- (f) What are the limitations of Kelvin's law?
- (g) Single core cables are usually not provided with steel armour. Give reason.
- (h) What is meant by a bipolar link in HVDC transmission system?
- (i) What factors govern soil resistivity?
- (j) Why is it necessary to earth neutral?
- (a) What are bundled conductors? Discuss the advantages of bundled conductors, when used for overhead lines.
 - (b) Derive an expression for the capacitance of a single phase overhead transmission line.

3.	(a)	Derive the inductance of a three phase line with symmetrical spacing.	5
	(b)	A 3 phase, 132 kV, 200 km, 50 Hz, single circuit line has horizontal spacin	g
		with 3.5 m between adjacent conductors. The conductor diameter is 1.4 cm	١.
		Find the line capacitance per phase and charging current per phase.	5
4.	A ba	alanced three phase load of 30 MW is supplied at 132 kV, 50 Hz and 0.8	5
	pow	er factor lag by means of a transmission line. The series impedance of	а
	sing	le conductor is (20 + j 40) Ω and total phase-neutral admittance is 315 × 10 ⁻⁶ Ω	5.
	Use	nominal II method to determine:	
	(i)	A,B,C,D constant of the line	
	(ii)	sending end voltage V _s	
	(iii)	regulation of the line	0
5.	Wha	at are the major components of a HVDC transmission system? Explain th	е
	func	ction of each component.	0
6.	(a)	A 3-phase 4 wire supply with a line voltage of 400V is loaded as follows: A	3
		phase load of 25 kW at a power factor of 0.8 lagging, single phase lighting	
		loads of 10,15,20 kW on phases R Y and B respectively. Determine the	е
		currents in all the conductors.	5
	(b)	What are the different types of reeders and distributors? Give their relative	е
		advantages and disadvantages.	5
7	(a)	Explain the procedure to design at parthing one.	5
	(b)	Find the earthing resistance of a driven rod of length 2.5 m and diameter	of
		1.5 cm if soil resistivity is 50 ohm-m.	5
8	Wri	te short notes on any two of the following:	2
	(a)	Capacitance of a three phase line with equilateral spacing	
	(b)	Reactive compensation of transmission line	
	(c)	Testing of insulators	
	(d)	Secondary distribution system.	