Registration No. :											
--------------------	--	--	--	--	--	--	--	--	--	--	--

Total number of printed pages - 2

B. Tech

PCBT 4402

RAL LI

· GUN

Seventh Semester Back Examination – 2014 BIOREACTOR DESIGN AND ANALYSIS

BRANCH: BIOTECH

QUESTION CODE: L153

Full Marks - 70

Time: 3 Hours

Answer Question No. 1 which is compulsory and any five from the rest.

The figures in the right-hand margin indicate marks.

Answers the following questions briefly :

2×10

- (a) What is a bioreactor? How homogenous reaction is related to bioreactor?
- (b) Write down the applications of air lift fermenter.
- (c) Differentiate between ideal and non ideal reactors.
- (d) Write assumptions in the Kunii-Levenspiel model (at least two).
- (e) Write down the advantages of bubble column reactor.
- (f) Define Ideal bioreactor. How it differs from Non-ideal bioreactor?
- (g) What is biosensor? Give one suitable example.
- (h) What is mixing time? What is the relationship between mixing time and circulation time?
- (i) Define phauxostat.
- (i) What is Hollow fiber reactor?
- What is FBR ? Give details on construction and mechanisms of Fluidized Bed Reactor.
- (a) Describe the basic aspects of reaction theory.

6

(b) α -Amylse is used for production of high cellulose syrup. ΔH°_{rxn} for reaction = 5.73 kJ gmol⁻¹, ΔS°_{rxn} for reaction = 0.0176 kJ gmol⁻¹K⁻¹, R = 8.3144Jgmol⁻¹K⁻¹, Calculate the equilibrium constants at 50°C and 75°C.

- Define Ideal bioreactor. Derive the material balance equation for ideal CSTR and PFR.
- 5. Write any **two** of the following:

5×2

- (a) Fluidized bed Reactor
- (b) Mixed Reactor
- (c) Valves in bioreactor.
- 6. Describe the computer control, sensing technologies and its application in bioreactor.
- 7. What is RTD? Write down the theories for RTD. How to calculate it for PFR and CSTR?
- 8. Answer any **two** of the following:

5×2

- (a) Reactor stability
- (b) Different control process for bioreactor
- (c) Continuous Stirred Tank Reactors (CSTR).