Registration No. :		11.1					

Total number of printed pages – 2

B. Tech FECE 6401

Seventh Semester Regular Examination – 2014 COMPUTER SYSTEM ARCHITECTURE

BRANCH: AEIE, EC, ETC, IEE

QUESTION CODE: H 285

Full Marks - 70

Time: 3 Hours

Answer Question No. 1 which is compulsory and any five from the rest.

The figures in the right-hand margin indicate marks.

Write short notes on the following :

2×10

- (a) What is the purpose of the system bus in the design of the modern computer?
- (b) Differentiate between computer architecture vs. computer organization.
- (c) Give an example of immediate addressing mode.
- (d) Differentiate between fetch and execute instruction.
- (e) What is the difference between a source operand and the destination operand of an instruction?
- (f) Give an example of zero address, one address, two address and three address instructions.
- (g) Differentiate between "synchronous bus" and "asynchronous bus".
- (h) Differentiate between RISC and CISC architecture.
- (i) Give the memory hierarchy of a computer system.
- (j) Write the steps to retrieve a word from a memory location by the CPU.
- (a) Give the basic structure of computer. Explain how the various functional units operate inside the computer.

	(b)	What is a bus ? Draw a single bus structure arrangement showing	ng
		connectivity to various units of computer system. Explain the operations	of
		I/O devices using single bus.	5
3.	(a)	Give an account of Big-endian and little-endian representation.	5
	(b)	What is the difference between direct and indirect addressing modes	; ?
		Explain with examples.	5
4.	(a)	Write the Booth's Algorithm for multiplying two binary numbers in signed-2	2's
		complement representation.	5
	(b)	Explain the operations on floating point numbers.	5
5.	(a)	Draw a diagram showing the main components the von Neumann mod	lel
		of computing, with a brief explanation of each component and how	it
		interacts with the rest.	5
	(b)	Design and explain fast addition and multiplication.	5
6.	(a)	What is the need of micro-programmed control unit? Draw the block	ck
		diagram of micro-programmed control unit to explain conditional branchir	ng
		in the micro-program.	5
	(b)	Explain how a direct mapping from 512 KB of cache to 512 MB of RAM ca	an
		be made.	5
7.	(a)	What is virtual memory and why is it used? Give reasons why the page size	ze
		in a virtual memory system should be neither very small nor very large.	5
	(b)	Give an account of page replacement policies.	5
8.	Writ	e short notes on any two of the following : 5 ×	2
	(a)	Assembly language	
	(b)	Performance of computers	
	(c)	Hardware controlled	
	(d)	Memory management requirement.	