Registration No. :										
--------------------	--	--	--	--	--	--	--	--	--	--

Total number of printed pages - 2

B. Tech

PCEC 4401

PAL LIBA

Seventh Semester Back Examination – 2014 VLSI DESIGN

BRANCH (S) : CSE, EEE

QUESTION CODE: L189

Full Marks - 70

Time: 3 Hours

Answer Question No. 1 which is compulsory and any five from the rest.

The figures in the right-hand margin indicate marks.

1. Answer the following questions:

2×10

- (a) Why does an NMOS stay in saturation if its gate and drain are shorted together when it is ON state?
- (b) State two advantages of CMOS inverter over other inverters.
- (c) Why is the Rise time more the than Fall time for a CMOS inverter with NMOS and PMOS of identical physical dimensions and process properties?
- (d) Why does a CMOS inverter dissipate power when its output changes from 1 to 0 or from 0 to 1?
- (e) Why is Pull Up Network made by PMOS and Pull Down Network made by NMOS in CMOS based designs?
- (f) Draw the circuit diagram of a 2-input XOR gate using NMOS Saturation Load.
- (g) Mention two advantages of Dynamic Logic Circuits over Static Logic Circuits.
- (h) State two advantages of SRAM over DRAM.
- (i) What is the difference between Word Line and Bit Line for RAM?
- (j) State two differences between PROM and EEPROM.
- (a) Show mathematically, how for Constant Field Scaling, Power Density remains constant even if the scaling factor is changed.
 - (b) What are the oxide related capacitances in MOSFET? Calculate the approximate values of oxide related capacitances for cut-off, linear and saturation region for a MOSFET.

- (a) For a CMOS inverter, derive a mathematical expression for the Threshold 3. Voltage V_{TH} (or Switching Voltage V_{SW}) of the inverter. Show that for a symmetric CMOS inverter i.e. a CMOS inverter for which (b) $V_{in} = V_{out} = 0.5 \times V_{DD}$, it should be true that : $(W/L)_{p} = 2.5 \times (W/L)_{N}$. Show that the expression for switching (dynamic) power dissipation for a 4. CMOS Inverter is $P = C_{Load} \times V_{DD}^2 \times F$. Here C_{Load} is the output load capacitance; F is the switching frequency of the input signal and V_{pp} is the supply voltage. "PMOS can transfer logic '1' efficiently, but PMOS cannot transfer logic (b) '0' efficiently" – Justify the statement with proper reasoning. Implement the logic $Y = \overline{A + B \cdot C}$ using Dynamic CMOS Logic and explain 5. its operation with timing diagram. Implement a 1-bit Full Adder using Transmission Gates. 5 (b) Draw the CMOS implementation of basic SR Latch. Explain its operation at 6. (a) MOSFET level. 5 Draw the circuit diagram of NMOS Load (depletion or enhancement) Shift (b) Register and discuss about how it works. 5 Draw the circuit diagram of 3 Transistor (3-MOSFET) based DRAM cell and 7. discuss the operation. 5 Design a 2-to-4 NOR based Row Address Decoder Circuit and discuss its operation. 5 Write short notes on any two of the following: 5×2 8. Photolithography

- (b) LOCOS
- Hot Carrier Injection (c)
- Built in Self Test. (d)