Registration No. :										
--------------------	--	--	--	--	--	--	--	--	--	--

Total number of printed pages - 2

B. Tech

PEEE 5407

OAL LIBE

Seventh Semester Back Examination – 2014 INDUSTRIAL AUTOMATION AND CONTROL

BRANCH (S): AEIE, EC, EEE, ETC, IEE

QUESTION CODE: L195

Full Marks - 70

Time: 3 Hours

Answer Question No. 1 which is compulsory and any **five** from the rest.

The figures in the right-hand margin indicate marks.

Answer the following questions :

2×10

- (a) Define controlled variable, manipulated variable, and load variable with suitable example.
- (b) Define resistance and capacitance of a process. What do you mean by dead time in a process?
- (c) Define proportional band (PB).
- (d) State and explain elements of a controller.
- (e) What do you mean by offset error? How do you overcome it?
- (f) List major functions of an adaptive control process.
- (g) State the condition to use Split-range control scheme in a process.
- (h) What is the difference between relay diagram and ladder diagram?
- (i) What do you mean by real time programming?
- (j) Which is a single mode controller that cannot be used alone and why?
- (a) Describe the characteristics of Proportional control, Integral control and Derivative control. Write suitability and limitations of their applications in process control.
 - (b) Explain non-interacting position PID algorithm.

3. (a) A self-actuating PI controller is used to control the trmperature of a process. The following data is known: 100% measurement input = $200 \, ^{\circ}$ F deviation in process temperature; 100% controller output = $\frac{3}{4}$ inch valve deviation; PB = 20%; Reset rate = 2 Repeats/min; The process temperature suddenly

5

- deviates by 2 °F above the set point and remains there. Calculate the total valve deviation after 2 minutes.
- (b) Draw the block diagram of a cascade control system and describe the function of each unit. Write the characteristics of cascade control. 5
- 4. (a) Explain the working principle of feed forward control of distillation column. 5
 - (b) Discuss the auctioneering control of catalytic tubular reactors with highly exothermic reaction.
- 5. (a) Discuss different Pneumatic actuation methods with suitable diagram. 5
 - (b) Explain the control strategy used in Figure 1 below.

5

.5

5×2

- 6. (a) Explain the working principle of relay.
 - (b) Three tanks containing oil have to be monitored continuously. Design a warning system to light up whenever two or more tanks are empty. A NO switch at the bottom of each tank gets energized whenever a tank is found empty.
- 7. (a) Draw a hierarchical DCS structure and explain function at each level. 5
 - (b) Give an example of multi-tasking process. Draw and describe state transition diagram of tasks.
- 8. Write short notes on any two of the following:
 - (a) Feed forward-feedback control configuration
 - (b) Control Valves
 - (c) End-point control
 - (d) Gain scheduling adaptive control.

PEEE 5407 2 – C