Registration No.:											
-------------------	--	--	--	--	--	--	--	--	--	--	--

Total number of printed pages - 2

B. Tech

PEEC 5414

FRAL UP

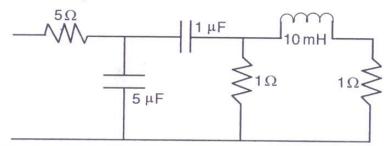
Seventh Semester Back Examination – 2014 ADVANCED CONTROL SYSTEMS

BRANCH (S): EC, EEE, ELECTRICAL, ETC

QUESTION CODE: L 161

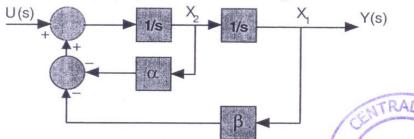
Full Marks - 70

Time: 3 Hours


Answer Question No. 1 which is compulsory and any five from the rest.

The figures in the right-hand margin indicate marks.

Answer the following questions :


2×10

- (a) Write down the definitions of z-transform and Laplace transform. Mention the nature of signals to which they can be applied.
- (b) What do you understand by a Sample-and-Hold circuit?
- (c) Determine the z-transform of a unit step signal.
- (d. What is the difference between a differential equation and a difference equation? Give an example of a difference equation.
- (e) Define Pulse Transfer Function. Is it always true that G(z)H(z)=GH(z)?
- (f) What is the minimum no. of state variables necessary to describe the network shown in figure?

- (g) A system is described by the differential equation $\overline{y} + 2\dot{y} + 3y = 0$. Write down the system matrix A in $\dot{X} = AX$ in controllable canonical form.
- (h) What do you mean by the 'State Transition Matrix'? List its properties.
- (i) What do you understand by 'Phase Trajectory'? Name two methods used to draw the phase trajectory.
- (j) What is the difference between a memory-less non-linearity and a non-linearity with memory?

- 2. (a) Find the Z-transform of $e^{-at} \sin wt$.
 - Find the inverse Z-transform of $\frac{(1-e^{-at})z}{(z-1)(z-e^{-at})}$.
- 3. (a) Obtain the Laplace Transform of a zero-order-hold.
 - (b) Obtain the z-transform of a system comprising of a zero-order hold followed by a plant with a transfer function $G(s) = \frac{1}{s+1}$.
- 4. (a) A state variable system $\dot{X}(t) = \begin{bmatrix} 0 & 2 \\ -2 & 0 \end{bmatrix} X(t) + \begin{bmatrix} 1 \\ 0 \end{bmatrix} u$. Find out the state transition matrix of the system.
 - (b) The transfer function of a system is given by $G(s) = \frac{2s+1}{s^2+7s+12}$. Obtain the state model of the system in observable phase variable form and diagonal canonical form.
- 5. (a) Consider the closed loop system shown in figure.

Obtain the state model of the system and determine the eigen values of the system.

- (b) Comment on the controllability and observability of the above system. 5
- 6. (a) Obtain transfer function of the system given below.

$$\dot{X}(t) = \begin{bmatrix} 1 & -2 \\ -2 & 4 \end{bmatrix} X(t) + \begin{bmatrix} 1 \\ 1 \end{bmatrix} u, y = \begin{bmatrix} 1 & 0 \end{bmatrix} X.$$

- (b) Define the terms 'Controllability' and 'Observability'. 4
- 7. (a) Describe the various types of stability considered for a non-linear system.
 - (b) What do you understand by the term 'Jump Resonance'?
- 8. Write short notes any **two**: 5×2
 - (a) Bilinear Transformation
 - (b) Lyapunov Function
 - (c) Common physical non-linearities
 - (d) Limit Cycle.

6

5

5