Registration no:											
------------------	--	--	--	--	--	--	--	--	--	--	--

Total Number of Pages: 2

B.TECH PCCI4402

7th Semester Regular / Back Examination 2015-16 WATER SUPPLY AND SANITARY ENGINEERING

BRANCH: CIVIL Time: 3 Hours Max marks: 70 Q.CODE: T702

Answer Question No.1 which is compulsory and any five from the rest.

The figures in the right hand margin indicate marks.

Q1 Answer the following questions:

(2 x 10)

- a) Define per capita water demand. How is it calculated?
- b) Show that depth has no role in the design of a sedimentation tank.
- c) Give the factor affecting population growth rate.
- d) What is schmutzdecke?
- e) Name different sub-surface sources of water.
- f) What is time of concentration?
- g) Why a sewer is designed as a gravity pipe?
- h) What are the advantages of providing pipes in parallel?
- i) What is cavity formation in wells?
- i) Name the different layouts of distribution networks.
- **Q2 a)** Briefly discuss about the various water demands considered while designing a water supply scheme. (5)
 - **b)** Briefly discuss the factors affecting per capita water demand.
- Q3 a) Briefly discuss about the arithmetic increase and geometric increase (5) method of population forecasting.
 - b) The populations in 5 decades from 1940 to 1980 are given below. Find out the population in 2000, 2015 and 2021 using arithmetic increase and geometric increase method.

year	1940	1950	1960	1970	1980
population	27,000	31,000	38,000	45,000	50,000

Briefly discuss about the design concepts of a horizontal flow sedimentation tank. Two primary settling basins are 25 m in diameter with a side water depth of 2.5 m. A single effluent weir is located on the circumference of the basin. For a water flow of 24,000 m³/d, calculate:

(10)

(5)

(5)

- (i) Surface area and volume of the basin;
- (iii) SOR in $m^3/m^2/d$;
- (iii) Detention time in hours;
- (iv) Weir loading in m³/m/d.

Q5 a) Briefly discuss about pumping test and recuperation test for yield of an (5) open well. b) A 40 cm diameter well penetrates 30m below the static water table. (5) After 24 hours of pumping @ 5000 L/minute, the water level in a test well at 80 m is lowered by 0.55 m, and in a well 40 m away the drawdown is 1.15 m. (a) What is the coefficient of transmissibility of the aguifer? (b) Also determine the drawdown in the main well. **Q6** a) Briefly discuss about the theories behind filtration. (5) **b)** Discuss the construction of a slow sand filter with a neat sketch. (5) **Q7** a) Briefly discuss about the disinfecting action of chlorine. (5) b) What is break point chlorination? Give a brief account of it. (5) Q8 (5×2) Write short notes on any two: a) Twin well intake **b)** Physical characteristics of water c) Alum as coagulant

d) Activated sludge process