Reg	istra	tion no	: [
J			L		20												D TEOU
lota	II NU	mber o	T Pag	es: ()2											Р	B.TECH ECS5403
		7	th Se	eme	ster	Reg	gulai	r / B	ack	Exa	min	atio	n 2	015	5-16	-	
						_	AL 7	ГІМЕ	E SY	STE	EMS						
									l: CS	•	•						
									3 Ho arks								
									E: T								
Α	nsw	er Qu	estio	n N	o.1 v	whic	•				y an	d a	ny 1	five	froi	m the	e rest.
			ne fig						-		-		-				
Q1		Answe			•										. ,		(2 x 10)
	a)	Specify compar				-			eratın	g sys	tems	and	gıve	a br	iet		
	b)	Discuss							ance I	Proto	col (F	IP).					
	c)	How Un	ix can	be u	sed a	as a re	eal tin	ne op	eratin	ıg sys	tem?						
	d)	Enumer	rate the	e fea	tures	of a h	nard r	eal tir	ne da	itabas	se sys	stem.					
	e)	How sa	fety is	guar	antee	d in c	ase c	of sys	tems	that c	do not	hav	e a "	fail-s	afe"		
	f)	state? Explain	briefly	the a	advar	ntage	s of R	MA o	ver E	DF.							
	g)	Give a	•			•					and o	otimis	stic c	conc	urren	су	
	h)	control Differen	protoc	ols us	sed ir	real	time	datab	ases.							-	
	i)	Why clo	ck syr	nchro	nizati	on is	a criti	ical is	sue ir	n cas	e of R	RTS.					
	j)	Discuss	the cr	riteria	for F	RMA s	sched	ulabil	ity.								
Q2	a)	With a	neat b	olock	diag	ram	expla	in th	e bas	sic m	odel	of a	RTS	8.			(5)
	b)	Explain		mpor	tant	differ	ence	betw	veen	hard	, firm	and	soft	t rea	ıl time	Э	(5)
Q3	a)	system Explain		vorki	na nr	incin	le of	PCP	in th	e cor	nteyt	nf sh	narin	ıa cr	itical		(5)
QU	uj	resource													itioai		(0)
		inversion	ons th	at ca	an oc	cur u	nder	PCP						·			
	b)	A set o uniproc				-									l		(5)
		respect			_												
		Task	Pi	Ei	R1	R2	R3							9			
		T1	400	30	15	20											
		T2	200	25		20	10										
		T3 T4	300 250	40 35	10	10	10										
		T5	450	50			5										

b) Specify the characteristics of periodic, aperiodic and sporadic real time

(5)

(5)

Q4 a) With a suitable example, explain how PIP can lead to deadlocks.

tasks.

- **Q5** a) Describe the focused addressing and bidding and buddy algorithm for running a set of real time tasks in a distributed environment. (5)
 - **b)** Discuss the necessary features that are expected from a Real-Time operating system (5)
- **Q6 a)** Briefly indicate how Unix dynamically re-computes task priority values. **(5)** Why is such re-computation of task priorities required?
 - **b)** Explain how a real-time database differs from a conventional database? (5)
- Q7 a) Consider a real-time system whose task characteristics and dependencies are described in the following table. These tasks repeat every 150 msec. Determine a feasible schedule which could be used by a table-driven scheduler.

Task	Computation Time (E _i)	Deadline (D _i)	Dependency
T1	10	50	
T2	10	80	T1
Т3	30	60	T1
T4	50	150	T3, T2
T5	35	140	T2

b) Briefly explain the "Rhealstone Metric" for benchmarking the Real-Time (5) Systems.

Q8 Write short notes on any two:

 (5×2)

- a) POSIX
- **b)** Byzantine Clock
- c) Quality of Service
- d) Chain blocking