GIET MAIN CAMPUS AUTONOMOUS GUNUPUR – 765022

3000					
Registration No:					

Total Number of Pages: 01

M.TECH

AR-18

M.TECH 1ST SEMESTER EXAMINATIONS(BACK), NOV/DEC 2019 PE. MPEPC1020

MODELING AND ANALYSIS OF ELECTRICAL MACHINES

Time: 3 Hours Max Marks: 70

The figures in the right hand margin indicate marks.

PART-A

 $(10 \times 2=20 \text{ MARKS})$

BD18002018

- 1. Answer the following questions.
 - (a) Define & write relation for stored magnetic energy.
 - (b) Write voltage & torque equation of shunt motor.
 - (c) What is meant by dynamic performance of three phase fault in induction motor?
 - (d) Draw equivalent circuit of three phase induction motor?
 - (e) What is meant by reference frame theory?
 - (f) Define critical time?
 - (g) Why synchronous motor is constant speed motor?
 - (h) What is hunting & how it can be prevented?
 - (i) What is brushless DC motor?
 - (j) State the need of computer simulation.

PART-B

 $(5 \times 10=50 \text{ MARKS})$

Answer any five questions from the following.

- 2. (a) Analytically, derive an expression for MMF of three phase winding.
 - (b) From the basic equation, derive an expression for voltage in d-axis & q-axis for synchronous machine
- 3. (a) Explain single & double excited system.
 - (b) Why damper bars are used? Explain its significance
- 4. (a) Explain the method for two phase to three phase transformation
 - (b) Explain the mathematical modeling of a single phase induction motor.
- 5. (a) Describe some applications where two phase to three phase transformation is required.
 - (b) Derive the torque equation of a three phase induction machine.
- 6. (a) Derive the voltage equations of a synchronous machine in rotor reference frame.
 - (b) Derive the mathematical representation of a synchronous machine.
- 7. (a) State the principles of electromechanical energy conversion.
 - (b) For a doubly excited system, the inductances are approximated as follows, the coils are energized with direct currents I₁=0.7A, I₂=0.8A

$$L_1 = 11 + 3\cos 2\theta H$$
 $L_2 = 7 + 2\cos 2\theta HM = 11\cos \theta H$

- (i) Find the torque as a function of θ , and its value, when $\theta = -50^{\circ}$
- (ii) Find the energy stored in the system as a function of θ
- 8. Write Short notes on
 - (a) Three phase symmetrical induction machine
 - (b) Reluctance Motors