

GIET UNIVERSITY, GUNUPUR – 765022

RD19MTECH004

Registration No:										
------------------	--	--	--	--	--	--	--	--	--	--

Total Number of Pages : 02 M.TECH

AR-19

M.TECH 1ST SEMESTER EXAMINATIONS NOV/DEC 2019 Branch: CHEMICAL, MPCCH1010 APPLIED MATHEMATICS FOR CHEMICAL ENGINEERING

Time: 3 Hours Max Marks: 70

The figures in the right hand margin indicate marks.

PART-A

(10 X 2=20 MARKS)

1. Answer the following questions.

- a) Define Fast Fourier Transform.
- b) Draw the basic butterfly diagram for DIF algorithm.
- c) "Multistep methods are not self starting." Justify.
- d) State the conditions of the equation A u_{xx} + B u_{yy} + C u_{yy} +D u_x +E u_y + F u = G where A, B, C, D, E, F, G are function of x and y to be (i) elliptic (ii) parabolic (iii) hyperbolic
- e) What is the value of k to solve $\frac{\partial u}{\partial t} = \frac{1}{2}u_{xx}$ by Bender-Schmidt method with h=1 if h and k are the increments of x and t respectively?
- f) Find f (2.5) from the data using piecewise linear interpolation.

X:	1	2	3
F(x)	0	1	8

- g) If $Y(X_{i-1}) = Y_{i-1}$ and $Y(X_i) = Y_i$. Write down the piecewise cubic spline interpolation formula for Y(X) Valid in $X_{i-1} \le X \le X_i$.
- h) What are Hermites's interpolating conditions?
- i) What is piecewise interpolation and what is the advantages of it?
- j) What is interpolation? What is the difference between interpolation and extrapolation?

PART-B

(5 X 10=50 MARKS)

Answer ANY FIVE questions

Q2 Analyze the following set of three linear algebraic equations in three variables using the Gauss Elimination method: (10)

$$3X_1 + X_2 - 2 X_3 = 9$$

 $-X_1 + 4X_2 - 3X_3 = -8$
 $X_1 - X_2 + 4X_3 = 1$

Q3 (10)

Analyze the following set of three linear algebraic equations in three variables using the Gauss–Seidel method:

$$10X_1 + X_2 + 2X_3 = 44$$

 $2X_1 + 10X_2 + X_3 = 51$

RD19MTECH004

(10)

 $X_1 + 2X_2 + 10X_3 = 61$

Evaluate the values of x and y that satisfy the following two nonlinear algebraic equations: (10)

$$f(x, y) = e^{x} + xy - 1 = 0$$

$$g(x, y) = \sin xy + x + y - 1 = 0$$

Q5 Solve the following ordinary differential equations:

, da

$$\frac{dy}{dx} = z \,, \quad \frac{dz}{dx} = -y$$

With the initial condition y (0) = 2, z (0) = 1. Determine the value of y and z at x = 3. Compare the numerical solution with the analytical solution. The analytical solution of the given differential equations is $y = A\sin(x + \alpha)$ and $z = A\cos(x + \alpha)$.

Q6 (10)

Consider stirred vessels which initially contain 760 kg of solvent at 25°C.12 kg/min of solvent flows into the stirred vessels at 25°C and exits out also at the same rate. At t = 0 the flow of steam is started in a coil in the stirred vessels. The heat supplied by steam to the solvent is given by $Q = UA(T_S - T)$, where UA is the overall heat transfers coefficient multiplied by coil area through which heat exchange takes place and T_S is the temperature of steam and is 150°C. UA = 11.5 kJ/min-K. The Specific heat of the solvent is Cp = 2.3 kJ/kg- K.

Show that $\frac{dT}{dt}(\circ C/s) = 0.023 - 0.000373T$

Determine the solvent temperature after 50 min. Also determine the maximum temperature that can be reached in the tank. The Specific heat of the solvent is Cp = 2.3 kJ/kg-K

Q7 Using the Runge–Kutta fourth order method ,Integrate the ordinary equation (10)

$$\frac{dx}{dy} = x + y$$

The initial condition is: at x = 0, y = 0. Determine the value of y at x = 0.2. The analytical solution is given by $y = e^x - x - 1$.

Q8 Consider 1-dimensional steady state conduction without heat generation taking place in a rectangular slab. The temperature of the left side of the slab is 100°C and of the right side is 200°G. The length of the slab is 10 cm and the thermal conductivity of the slab is 120

W/cm-K. Make nine uniform divisions. The governing equation is $k \frac{d^2T}{dx^2} = 0$