Registration No.										
------------------	--	--	--	--	--	--	--	--	--	--

Total number of printed pages - 02

B.TECH PCCH4401

03

7th Semester Regular / Back Examination 2016 - 17 CHEMICAL ENGINEERING THERMODYNAMICS

BRANCH: Chemical Time: 3 Hours

Max Marks: 70 **Question Code: Y145**

Answer Question No. 1 which is compulsory and any FIVE from the rest. The figures in the right-hand margin indicate marks.

Assume suitable notations and any missing data wherever necessary. Use of Steam Table is permitted. Answer all parts of a question at a place.

1.		Answer the following questions:	2 x 10
	(a)	For liquid water in equilibrium with a mixture of water vapour	
		and nitrogen, find the number of degrees of freedom.	
	(b)	The volume expansivity values for incompressible fluids and	
		liquids are and respectively.	
210	(c)	What do you understand by polytropic process?	210
	(d)	What is accentricfactor? Mention its significance.	
	(e)	State Duhem's theorem.	
	(f)	What do you understand by partial molar properties?	
	(g)	Write the summability relations.	
	(h)	Write the basis for Gibb's theorem.	
	(i)	What are fugacity and fugacity coefficients?	
210	(j)	State and explain Lewis/Randall rule.	210
2.	(a)	Calculate ΔU and ΔH for 2 kg of water when it is vaporized at constant temperature of $100^{\circ}C$ and constant pressure of 101.325 kPa. The specific volumes of liquid and water vapour at these conditions are 0.00104 and 1.673 m³/kg. For this change heat in the amount of 2256.9 kJ/kg is added to the water.	04
210	(b)	Drawa neat PT diagram and explain the behaviour of pure	210
	` ,	substances.	06
3.	(a)	For liquid acetone at 20°C and 1 bar, $\beta = 1.487 \times 10^{-3}$ °C, k = 62 x 10 ⁻⁶ /bar, and v = 1.287 cm ³ /g. Find: (i) the value of $\left(\frac{\partial p}{\partial T}\right)_{T}$	
210		at 20°C and 1 bar, (ii)pressure generated by heating at constant v from 20°C and 1 bar to 30°C, and (iii) change in volume for a change from 20°C and 1°bar to °C and 10 bar.	²¹⁰ በ3

(b) An ideal gas undergoes the following sequence of mechanically reversible process in a closed system. (i) from an initial state of 70°C and 1 bar, it is compressed adiabatically to 150°C, (ii) it is then cooled from 150°C to 70°C at P = constant, and finally (iii) it is expanded isothermally to its original state. Calculate W, Q, ΔU, and ΔH for each of the three processes and for the entire cycle.
Data: Cy = 3/2 R, Cp = 5/2 R, R = 8.314 J/mol K, Cy = 12.471

Data: $C_V = 3/2$ R, $C_P = 5/2$ R, R = 8.314 J/mol.K, $C_V = 12.471$ and $C_P = 20.785$ J/mol.K.

07

10

A binary system of acetonitrile(1) and nitromethane(2) conforms closely to Raoult's law. Vapour pressures for the pure species are given by the following Antoine equations. $\ln P_1^{sat} = 14.27 - \frac{2945.47}{T - 49.15} \text{and } \ln P_2^{sat} = 14.21 - \frac{2972.64}{T - 64.15}, \text{ where } T \text{ is in kelvin. Prepare a graph showing T vs. x₁ and T vs. y₁ for$

T is in kelvin. Prepare a graph showing T vs. x_1 and T vs. y_1 for a pressure of 70 kPa.

- 5. Derive the Gibb's/Duhem equation. 210 210 10
- 6. For H_2O at a temperature of 300^0C and for pressures upto 10,000 kPa calculate values of f_i and Φ_i from data in steam tables and plot them vs. p.
- 7. (a) Discuss briefly about excess property relations. 05
 - **(b)** Develop expressions for the mole fractions of reacting species as functions of the reaction coordinate for a system initially containing 3 mol H₂S and 5 mol O₂ and undergoing the reaction:

$$2 H_2S (g) + 3 O_2 (g) \rightarrow 2 H_2O (g) + 2 SO_2 (g)$$
 05

- 8. Write short notes on any **TWO**: 5 x 2
 - (a) Virial equations of state
 - **(b)** Partial properties in binary solutions
 - (c) Ideal solution model
 - (d) Multireactionstoichiometry
