Registration no:										
------------------	--	--	--	--	--	--	--	--	--	--

Total Number of Pages: 02

B.Tech PCMT4402

7th Semester Regular / Back Examination 2016-17 STEEL MAKING

BRANCH: METTA, MME

Time: 3 Hours Max Marks: 70 Q.CODE: Y347

Answer Question No.1 which is compulsory and any five from the rest.

The figures in the right hand margin indicate marks.

Q1 Answer the following questions:

(2 x 10)

- a) What do you mean by autogenous Steel making process?
- b) What is sub lance?
- c) Why LD process is so fast?
- d) Lime slag is well suited for low carbon heats in EAF-Justify.
- e) What is diameter of electrode spacing in EAF?
- f) What is the role of oxy-fuel burner in EAF?
- g) What is the importance of oreing in open hearth?
- h) Lime stone is used as partial replacement of lime in OBM- Justify.
- i) What is SEN?
- j) What is the role of an inactive mixture in an integrated steel plant?

Q2 Chemistry of input and output materials for LD process is as follows: (10)

Element,	Hot	Scrap	Steel
%	Metal		to be produced
C 210	3.5	0.20	0.15
Si	1.20	0.02	0.01
Mn	0.75	0.40	0.25
Р	0.40	0.04	0.03
S	0.04	0.04	0.03

Lime contains 94.5% CaO, 2.5% MgO, 1.5% SiO₂, and 1.5% Al₂O₃. Lime and Scrap are charged @ 50kg and 200kg respectively per ton of steel production. Considering 1.5% Fe loss w.r.t. steel production, calculate:

- i. Amount of hot metal to be charged per ton of steel production
- ii. Amount of slag produced
- **Q3** a) Describe one heat of LD process with suitable figures.

(5)

(5)

b) Describe with a neat sketch the impurity elimination curve of LD process.

2

Q4	a)	Describe different typ slag practice.	es of slag in I	EAF with spec	cial reference t	o double	(5)
210	b)	DRI can be a good so	ubstitute for so	crap –justify.	210	210	(5)
Q5	a)	What is continuous curved mould (S-type	· ·		the special fe	atures of	(5)
	b)	Describe the metallur	•	· ·	nts of OBM pro	ocess.	(5)
Q6°	a) b)	What are the points Describe the mechan Explain the principle making.	ism of deoxid	ation.			(5) (5)
Q7		Describe the carbor making.			·		(10)
210		210	210	210	210	210	
00		Write obort opour	TWO				(E v 2)
Q8	a)	Write short answer of Non-metallic inclusion	•				(5 x 2)
Ц8	b)	Non-metallic inclusion Oxygen transport in c	า				(5 X 2)
210		Non-metallic inclusion	า		210	210	(5 X Z)