Registration no:										
------------------	--	--	--	--	--	--	--	--	--	--

Total Number of Pages: 03

<u>B.TECH</u> PEME5401

7th Semester Regular / Back Examination 2016-17 MECHANICAL VIBRATION

BRANCH: MECHANICAL Time: 3 Hours

Max marks: 70 Q.CODE: Y216

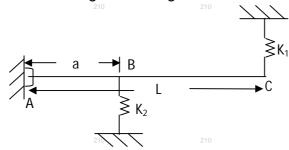
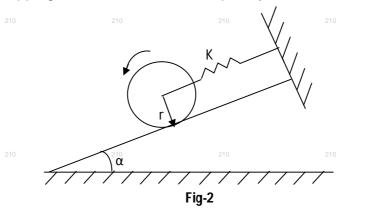
Answer Question No.1 which is compulsory and any five from the rest.

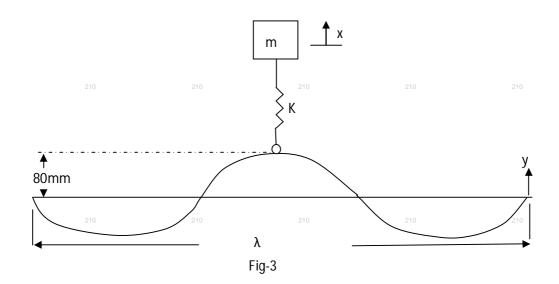
The figures in the right hand margin indicate marks.

Q1 Answer the following questions:

(2 x 10)

- **a)** Distinguish between longitudinal vibration and Transverse vibration along with diagrams and examples.
- **b)** Determine the natural frequency of a spring-mass system by Rayleigh's method.
- c) Explain D' Alemberts Principle and its significance for vibration through an example.
- d) A harmonic motion has frequency value of 15cps and its maximum velocity is 5 m/sec. Find out its amplitude, time period of oscillation and maximum acceleration.
- e) Distinguish between viscous damping and coulomb damping along with examples.
- **f)** Give a diagrammatic comparison of motion under different types of damping conditions.
- **g)** What is magnification factor? Draw the response curves between magnification factors against frequency ratio for different values of damping ratio.
- h) Explain sharpness of resonance through diagram and quality factor.
- i) Explain the transmissibility of motion and transmissibility of force and plot the response curves between transmissibility against frequency ratio of various values of damping factor
- Explain the degrees of freedom and mode shapes of a system under vibration through diagram.
- **Q2 a)** Find the natural frequency of vibration of a system as shown in fig.1. The rod is assumed to be rigid and weightless.


Fig. 1

A cylinder of mass 'm' and radius 'r' is connected by a spring of stiffness 'k' on an inclined plane as shown in fig.2. It is free to roll on the surface without slipping, find out the natural frequency.

- Q3 a) Find the frequency ratio for which the amplitude in forced vibration will be maximum. Also determine the peak amplitude and the corresponding phase angle.
 - b) A spring mass damper system is defined by the following parameters m=3Kg, K=100N/m, C=3N-S/m.

 Determine (5)
 - i) The critical damping constant.
 - ii) Damping ratio.
 - iii) Frequency of damped oscillation
 - iv) Logarithmic decrement
 - v) 210 No of cycles after which the initial amplitude is reduced to 20%.
- Q4 a) A machine of 100Kg mass is supported on springs of total stiffness 700KN/m and has an unbalanced rotating element, which results in a disturbing force of 350N at a speed of 3000 rev/m. Assuming a damping factor of 0.25, determine (i) its amplitude due to the unbalance (ii) the transmissibility and (iii) the transmitted force.
 - b) The spring of an automobile traler are compressed 0.1m under its own weight. Find the critical speed when the trailer is passing over a road with profile of sine wave whose amplitude is 80mm and the wavelength is 14m. find the amplitude of vibration at speed of 60 Km/hr (fig-3)

(5)

Find the natural frequencies, amplitude ratios and mode shapes of the system as shown in fig.4. When K=1000N/m and M=20Kg.

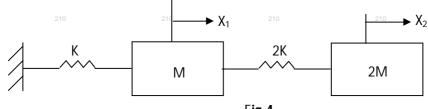
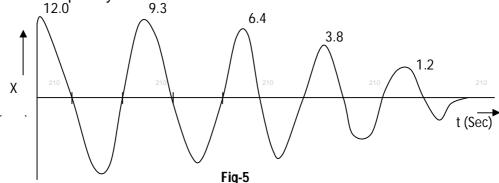



Fig-4

- **Q6** a) A beam of negligible weight and length 1.2m is simply supported at the ends and carries three transverse loads of 200N, 800N, and 400N at a distance of 0.3m, 0.6m and 0.9m from the left support. Find the frequency of transverse vibration by Dunkerley's method
 - b) Consider a spring-mass damper system with K=4000N/m, M=10Kg and C=40 N-S/m. Find the steady state and total response of the system under harmonic force of F=200Sin 10t (N), and initial conditions x = 0.1m and $\dot{x} = 0$ at t = 0.
- **Q7** a) A machine has a mass of 200Kg. It is placed on an isolator and the corresponding free vibration records one shown in fig-5. Determine the type of damping and its characteristics and also determine the undamped natural frequency.

b) Determine the natural frequencies and mode shapes of the system as shown in fig-6 by using Holzer's method.

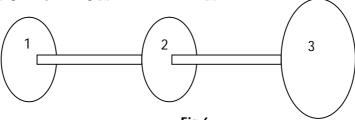


Fig-6

$$K_1 = 0.10 \times 10^6 \text{ N-m/ rad}$$

$$K_2 = 0.20 \times 10^6 \text{ N-m/rad}$$

$$J_1 = 5.5 \text{ Kg-m}^2$$

$$J_2 = 11.0 \text{ Kg-m}^2$$

$$J_3 = 22.0 \text{ Kg-m}^2$$

- Q8 a) Determine the frequency equation for transverse vibration of a uniform beam fixed at both ends. (5)
 - **b)** Find out the natural frequencies for the transverse vibration of a beam simply supported at both the ends and draw the mode shapes.

(5)

(5)

(5)