Regis	stra	ntion no:										
Total Number of Pages: 2 210 210 210							210 F	B.Tech ECS6401				
7 th Semester Regular / Back Examination 2016-17 INTRODUCTION TO DIGITAL SIGNAL PROCESSING BRANCH: CSE, IT, ITE												
Time: 3 Hours 210 210 Max Marks: 70 Q.CODE: Y137							210					
Answer Question No.1 which is compulsory and any five from the rest. The figures in the right hand margin indicate marks.												
Q1 ₂₁₀	a)	Answer the following questions: Determine whether or not the following signal is periodic. In case periodic specify its fundamental period.									210	(2 x 10)
	b) c)	$x(n) = cos(n/8)cos(\pi n/8)$ Determine the z- transform of the signal $x(n) = u(-n)$ Sketch the signal $x_a(t) = 3sin(100\pi t)$ for $0 < t < 30ms$.										
210	d) e) f) g)	State and prove the differentiation property of z Transform. How many complex multiplications and additions are required for computing N-point DFT. ²¹⁰ Write down the properties of convolution. What is the minimum sampling rate of the signal										
	h) i) j)	$f(t) = 10\cos(20\pi t)\cos(200\pi t)$. Compute the N-point DFT of $x(n) = \delta(n-n_0)$ 0 <n<sub>0<n Differentiate between linear convolution and circular convolution. Find out the even and odd component of the signal given by</n </n<sub>										
210		x(n)	= {2,3,4,5	5,6 _{}0}		210			210		210	
	a) b)	Calculate the energy and power of an unit impulse signal. By means of DFT and IDFT determine the response of the FIR filter with impulse response $h(n) = \{1,2,3\}$ and the input sequence $x(n) = \{1,2,2,1\}$.										(2) (8)
Q3 8	a)	Determine ti	he z-trans $x_1(n) = 0$ $x_2(n) = 0$	า(-1ี) ⁿ u	(n)	lowing 210	signa	als.	210		210	(5)
ı	b)	Compute the zero state response for the following pair of system and input signal. $h(n) = (1/2)^n u(n)$										(5)
210		210	• •	,) u(n) 3) ⁿ u(n)+(1/2) ⁻ⁿ ເ	ı(-n-1)	210		210	

- Q4 a) Compute the convolution y(n) = x(n)*h(n) $x(n) = u(n+1) - u(n-4) - \delta(n-5)$ h(n) = [u(n+2) - u(n-3)] .(3 - |n|)(5)
 - b) Examine the discrete time system y(n) = x(-n+2) with respect to the properties like static or dynamic, linear or non-linear, time invariant or time varying, causal or non-causal and stable or unstable. (5)
- **Q5** a) Determine the causal signal x(n) if its z-Transform X(z) is given by (5)
 - i) $X(z) = \frac{1+3z^{-1}}{1+3z^{-1}+2z^{-2}}$
 - ii) $X(z) = \frac{z^{-6} + z^{-7}}{1 z^{-1}}$
 - **b)** Determine all possible signals that can have the following z- Transform. (5) $X(z) = \frac{210^{2}}{1 1.5z^{-1} + 0.5z^{-2}}$
- **Q6** a) Find the DFT of the sequence $x(n) = \{4,3,2,1\}$ using DIF-FFT algorithm. (5)
 - **b)** Convert the analog filter with system function $H_a(s) = \frac{s+0.1}{(s+0.1)^2+16}$ into digital IIR filter by means of Bilinear transformation method. The digital filter is to have a resonant frequency of $\omega_r = \pi/2$.
- Q7 By means of DFT and IDFT determine the circular convolution of the sequences $x_1(n) = \{1,2,3,1\}$ $x_2(n) = \{4,3,2,2\}$
- Q8 Write short answer on any TWO: (5 x 2)
 - a) Impulse Invariance Method
 - c) DFT as a linear Transformation
 - d) Overlap save Method

b) Circular Convolution