Registration no:										
------------------	--	--	--	--	--	--	--	--	--	--

Total Number of Pages: 02

B.TECH PCCI4401

7th Semester Regular / Back Examination 2016-17

FOUNDATION ENGINEERING

BRANCH: CIVIL

Time: 3 Hours Max Marks: 70 Q.CODE: Y194

Answer Question No.1 which is compulsory and any five from the rest.

The figures in the right hand margin indicate marks.

Q1 Answer the following questions:

(2 x 10)

- a) Distinguish between 'active' and 'passive' earth pressure.
- **b)** Differentiate between Rankine and Coulomb theories of earth pressure.
- c) What are the criteria for deciding the depth of foundation?
- **d)** Write down the Vesic's bearing capacity equation defining each of the terms.
- e) Sketch an uplift pile. What is its function?
- f) Write the Seiler-Kinny formula. How is it used?
- **g)** Write a critical note on 'negative skin friction' in piles.
- h) If N value is 35, what is the corrected N value?
- i) One sampler has an area ratio of 27% while another has 14%; which of these samplers you would prefer and why?
- i) What is a reverse fault? Sketch it.
- **Q2**° a) A retaining wall with a smooth vertical back is 10 m high and retains a two layer sand backfill with following properties:

$$0 - 5 \text{ m depth: } c' = 0, \ \varphi' = 32^0, \ \gamma = 20.71 \ \text{kN/m}^3$$

Below 5 m depth:
$$c' = 0$$
, $\phi' = 31^0$, $\gamma = 22.54$ kN/m³

Show the active earth pressure distribution assuming that the water table is at 5 m below the top of the retaining wall. Assume that the top of the backfill is horizontal.

b) Discuss Culmann's graphical solution for active earth pressure.

(5)

Q3	a)	A square footing located at a depth of 1.5 m below the ground surface has to carry a safe load of 900 kN. Find the size of the footing if the	(5)
210		desired factor of safety is 3. The soil has the following properties:	
		Voids ratio (e) = 0.52, degree of saturation = 53%, specific gravity (G) = 2.66, cohesion (c) = 7 kPa, angle of internal friction (ϕ) = 26 ⁰ . Use	
210		Terzaghi's analysis.	
	b)	Write brief notes on 'Standard Penetration Test' and discuss how you can obtain the bearing capacity of a soil from a standard penetration test.	(5)
Q4	(a) (b)	How is the settlement of footings estimated? What are the general conditions in the choice of foundation type? Explain ₂ various foundation types. 210 210 210	(5) (5)
Q5	a)	Design a square pile group to carry 500 kN in clay with unconfined	(5)
		compression strength of 65 kPa. The piles are 35 cm diameter and 6	
		m long. Adhesion factor may be taken as 0.6.	
210	b)	Write brief critical note on bearing capacity of piles. How is skin friction and point resistance of a pile computed?	(5)
Q6	a)	Sketch a well foundation showing all its component parts. How do you estimate the bearing capacity and depth of a well foundation?	(5)
	b)	Enumerate various geophysical methods of site investigation. Discuss the seismic refraction method in brief.	(5)
Q7 °	a)	How would you fix the depth of boring for various civil engineering	(5)
	b)	constructions? Discuss the IS guidelines. Write a brief critical note on 'vane shear test'.	(5)
Q8	a) b) c) d) e) f) g) h)	Write brief notes on any five Various corrections to SPT- N value Bedding planes Batter piles 210 210 210 210 210 210 210 210 210 210	(2 x 5)
	i)	Defects in a rock mass	