Registration no:								
------------------	--	--	--	--	--	--	--	--

Total Number of Pages: 02

<u>B.Tech</u> PEEC5414

7th Semester Regular / Back Examination 2016-17 ADVANCED CONTROL SYSTEMS

BRANCH(S): EE, EEE
Time: 3 Hours

Max Marks: 70

Q.CODE: Y210

Answer Question No.1 which is compulsory and any five from the rest.

The figures in the right hand margin indicate marks.

Q1 Answer the following questions:

(2 x 10)

- a) Write down the expression for the Z-transform of f[(n+k)]. Prove the same.
- **b)** Define Pulse Transfer function. Draw the block-diagrammatic configuration of a sampled-data system, whose pulse transfer function cannot be determined.
- **c)** Determine the Z-transform of $e^{-at} \sin \omega t$.
- **d)** Where should the z-plane poles be located for stability of the discrete-time control system?
- e) The state model of an RLC system is given by the following differential equations.

$$\dot{x}_{1} = -\frac{1}{C} x_{2} + \frac{1}{C} u(t)$$

$$\dot{x}_{2} = -\frac{1}{L} x_{1} - \frac{R}{L} x_{2}$$

$$v_{0} = Rx_{2}$$

- **f)** What do you understand by 'Similarity Transformation'? Do the eigen values change under similarity transformation?
- g) If the eigen vales of a system are -1,-1 and -2, write down the state transition matrix.
- **h)** What do you infer about the controllability or observability of a system if the transfer function has pole-zero cancellation?
- i) Discuss some of the properties of non-linear systems which they differ from the linear systems?
- j) What do you mean by piece-wise linear systems?
- **Q2** a) Obtain the Z-transform of the function $f(k) = \frac{a^k}{k!}$

(6)

b) Determine the initial and final value of the following function.

(2+2)

$$f(z) = \frac{z^2 + 2z + 1}{z^3 + 3z^2 + 3z + 1}$$

Q3 a) Find the inverse Z-transform of

(6)

$$F(z) = \frac{1}{(z^2)(z-1)^2(z+1)}$$

By Residue method.

- **b)** Explain the function of Sample and Hold device.
- Determine the unit step response of a sampled data control system shown in figure. (10)

Q5 a) Determine the eigen vectors if the system matrix is given by

$$A = \begin{bmatrix} 1 & 1 & 2 \\ 0 & 2 & 1 \\ 0 & 0 & 2 \end{bmatrix}$$
 210

b) Obtain the normal form of the state model for the system whose transfer function is given by

$$T(s) = \frac{Y(s)}{U(s)} = \frac{s+1}{(s+1)^2(s+2)}$$

- **Q6** a) Find e^{At} for $A = \begin{bmatrix} 0 & 1 \\ -4 & -4 \end{bmatrix}$ using Cayley-Hamilton Theorem.
 - **b)** Find out the transfer function of a system whose state model is given by (5)

$$\dot{X} = \begin{bmatrix} -1 & 0 \\ -2 & -3 \end{bmatrix} X + \begin{bmatrix} 0 \\ 1 \end{bmatrix} u$$
$$Y = \begin{bmatrix} 1 & 1 \end{bmatrix} X$$

Q7 a) Define controllability and observability of a system. Test the controllability of the following system by Kalman's test.

$$\begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ -1 & -2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + \begin{bmatrix} 1 \\ -1 \end{bmatrix} u$$
$$y = x_1$$

- b) What is Limit cycle? Explain about stable and unstable limit cycles with suitable diagrams. (4)
- Q8 Write short answer on any TWO: (5 x 2)
 - a) Diagonalisation
 - **b)** Describing Function Method
 - c) Jump Resonance
 - d) Pole Placement by State Feedback

(4)

(6)

(5)