

		RN19MSC026
	Roll No:	
Total Numb	er of Pages : 2 AR-18 M.Sc 3 rd SEMESTER REGULAR EXAMINATIONS, NOV/DEC	M. Sc
	Subject code: CEC-PHY-304	2019-20
	Subject: Condensed Matter and Materials Physics - I	
Time: 3 Hor		Max Marks: 80
	The figures in the right hand margin indicate marks. SECTION A	
0.1	Answer any four of the following:	[4 X4 =16]
Q.1 a	Explain creation and annihilation operators.	
b	State the de Hass-van Alphen effect transport theory.	
c	Explain the local density approximation.	
d	Write about Hartree –Fock approximation.	
e	Explain the various thermodynamics effects of superconducting states.	
f f	What are (i) Quasi electrons (ii) Cooper pairs	
1	Or	
2. A	nswer all questions from the following	$[8 \times 2 = 16]$
a	What are Phonons? Write down its significance.	2
b	Name some methods of band calculation	2
с	What is Hartree approximation?	2
d	Give the phenomenon of superconductivity.	2
e	What is Meissner effect?	2
f	What is A.C. Josephson effect?	2
g	How does electron phonon interacts?	2
h	What is BCS theory?	2
	SECTION-B	
3. A	nswer all Questions:	[4 x 16 =64]
а	Explain (i) Tight binding method (ii) Pseudo potential method of band calculation	16
	OR	
b	Explain the Boltzman transport equation. Discuss the Relaxation time	16
4	approximation.	
4.	Describe the Hartree-Fock approximation theory for jellium.	16
a	OR	10
b	Explain the Density functional theory.	16
5.	Evaluin in datail Tyme L and Tyme II apparean dystam	16
a	Explain in detail Type-I and Type-II superconductors. OR	16
b 6.	Derive the London equation and explain its significance.	16
0. a	Describe the Ground state of superconducting electron gas.	16
a	OR	10
b	Explain the fundamentals of High T _c superconductors.	16