

|                                                                                                           |                                                                                                                                  |                 |              |          |         | RN19            | MSC024 |  |
|-----------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|-----------------|--------------|----------|---------|-----------------|--------|--|
|                                                                                                           | Roll No:                                                                                                                         |                 |              |          |         |                 |        |  |
| Total Number of Pages : 2 AR-18                                                                           |                                                                                                                                  |                 |              |          |         | N               | I.SC   |  |
| Total Nullio                                                                                              |                                                                                                                                  |                 |              | IINATI   | IONS,   | NOV/DEC 2019-20 | 1.50   |  |
|                                                                                                           | a                                                                                                                                | Ũ               | ect code: C  |          |         | T               |        |  |
| Subject: Ordinary Differential Equations-I<br>Time: 3 Hours Max Ma                                        |                                                                                                                                  |                 |              |          |         |                 | : 80   |  |
|                                                                                                           |                                                                                                                                  | gures in the ri | ght hand m   | argin ir | ndicate |                 |        |  |
|                                                                                                           |                                                                                                                                  |                 | SECTION      | А        |         |                 |        |  |
| Q.1                                                                                                       | Q.1 Answer any four of the following: [4 x 4 =16]                                                                                |                 |              |          |         |                 |        |  |
| a Show that $\phi(t) = \frac{t^3}{3} + \frac{t^2}{2} + 2t + 1$ is a solution of the differential equation |                                                                                                                                  |                 |              |          |         |                 | 4      |  |
|                                                                                                           | x'' = 2t + 1, x(0) = 1, x'(0) =                                                                                                  | 2               |              |          |         |                 |        |  |
| b                                                                                                         | Solve $(ut + tx^2)dt + (x + t^2x)dx = 0$ by the method of separation variables. 4                                                |                 |              |          |         |                 |        |  |
| с                                                                                                         | Let $f_1$ and $f_2$ be linearly ine                                                                                              |                 |              |          |         |                 | 4      |  |
|                                                                                                           | $f_1 - f_2$ are also linearly independent on I.                                                                                  |                 |              |          |         |                 |        |  |
| d                                                                                                         | Solve the system of equation                                                                                                     |                 |              |          |         |                 | 4      |  |
|                                                                                                           | $x_{1}^{'} = 5x_{1} - 2x_{2}, \ x_{2}^{'}$                                                                                       | $= 2x_1 + x_2$  |              |          |         |                 |        |  |
| e                                                                                                         | Compute the first three successive approximations for the solution of $x' = e^x$ , $x(0) = 0$                                    |                 |              |          |         |                 | 4      |  |
| f                                                                                                         | Verify that $y(t) = \cos t$ is a solution of $y'(t) = y\left(t - \frac{3}{2}\pi\right)$                                          |                 |              |          |         |                 | 4      |  |
|                                                                                                           |                                                                                                                                  |                 | (OR)         |          |         |                 |        |  |
| 2. Answer all questions from the following [8                                                             |                                                                                                                                  |                 |              |          |         | x 2 =16]        |        |  |
| а                                                                                                         | Determine the order of the                                                                                                       | differential e  | equation     |          |         |                 | 2      |  |
|                                                                                                           | $\frac{d^2x}{dt^2} + 7\frac{dx}{dt} + \int xdt = t^3$                                                                            |                 |              |          |         |                 |        |  |
| b                                                                                                         | Show that the equation $x'$                                                                                                      | =f(at+bx+       | -c) is trans | formed   | into tl | he equation     | 2      |  |
|                                                                                                           | u' = bf(u) + a by the substitution $u = at + bx + c$                                                                             |                 |              |          |         |                 |        |  |
| с                                                                                                         | Solve $x'' + 4x' + 20x = 0; -\infty < t < \infty$ .                                                                              |                 |              |          |         | 2               |        |  |
| d                                                                                                         | Define Wronskian.                                                                                                                |                 |              |          |         | 2               |        |  |
| e                                                                                                         | Define solution matrix.                                                                                                          |                 |              |          |         | 2               |        |  |
| f                                                                                                         | State the necessary and sufficient condition for the system $x' = Ax$ to admit a non-zero periodic solution of period $\omega$ . |                 |              |          |         | 2               |        |  |
| g                                                                                                         |                                                                                                                                  |                 |              |          |         |                 | 2      |  |
| h                                                                                                         | State Contraction Principl                                                                                                       | е.              |              |          |         |                 | 2      |  |

3. Answer all Questions:

## GIET UNIVERSITY, GUNUPUR – 765022

## RN19MSC024

## SECTION-B

[4 x16 =64]

| a(i)    | Let $x(t,t_0,x_0)$ and $y(t,t_0,x_0)$ denote the solutions of the equations                                                                                                                                            |     |  |  |  |  |  |
|---------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|--|--|--|--|--|
|         | $g(t.x.x') \equiv x' + a(t)x = 0$ and $x' + a(t)x = b(t)$ , $t \in I$ respectively passing through                                                                                                                     |     |  |  |  |  |  |
|         | $(t_0, x_0)$ and existing on I. Then prove that                                                                                                                                                                        |     |  |  |  |  |  |
|         | $y(t,t_0,x_0) = x(t,t_0,x_0) + \int_{t_0}^t x(t,s,b(s)) ds, \ t \in I$                                                                                                                                                 |     |  |  |  |  |  |
| (ii)    | Solve $(xdt - tdx) + x(t^2 + x^2)dx = 0$                                                                                                                                                                               | 8   |  |  |  |  |  |
|         | OR                                                                                                                                                                                                                     |     |  |  |  |  |  |
| b(i)    | (i) State and Prove the necessary and sufficient condition that the equation $M(t,x)dt + N(t,x)dx = 0$ is exact.                                                                                                       |     |  |  |  |  |  |
| (ii)    | Find the differential equations satisfied by all the parabolas whose axis is the axis of <i>t</i> .                                                                                                                    |     |  |  |  |  |  |
| 4.      |                                                                                                                                                                                                                        | 8   |  |  |  |  |  |
| a(i)    |                                                                                                                                                                                                                        |     |  |  |  |  |  |
|         | interval I and $\phi_1, \phi_2,, \phi_n$ are n solutions of the equation                                                                                                                                               |     |  |  |  |  |  |
|         | $L(x)(t) = x^{(n)}(t) + b_1(t)x^{(n-1)}(t) + \dots + b_n(t)x(t) = 0, \ t \in I.$ Prove that these n                                                                                                                    |     |  |  |  |  |  |
|         | solutions are linearly independent on I if and only if $w(t) \neq 0$ for every $t \in I$ .                                                                                                                             | 0   |  |  |  |  |  |
| (ii)    | Solve $x^{iv} - 2a^2x'' + a^4x = 0$                                                                                                                                                                                    | 8   |  |  |  |  |  |
| 1 (1)   | OR                                                                                                                                                                                                                     | 10  |  |  |  |  |  |
| b(i)    | State and Prove Abel's formula for Wronskian.                                                                                                                                                                          | 10  |  |  |  |  |  |
| (ii)    | Solve $x'' + x' = 4t^2e^t$                                                                                                                                                                                             | 6   |  |  |  |  |  |
| 5.<br>а | Determine $\exp(tA)$ for the system $x' = A(t)x$ where                                                                                                                                                                 | 16  |  |  |  |  |  |
| a       | Determine $\exp(tA)$ for the system $x' = A(t)x$ where                                                                                                                                                                 | 10  |  |  |  |  |  |
|         | $A = \begin{bmatrix} 1 & 1 & 1 \\ 0 & -2 & 3 \\ 0 & 1 & 0 \end{bmatrix}$                                                                                                                                               |     |  |  |  |  |  |
|         | $A = \begin{bmatrix} 0 & -2 & 3 \\ 0 & 1 & 0 \end{bmatrix}$                                                                                                                                                            |     |  |  |  |  |  |
|         |                                                                                                                                                                                                                        |     |  |  |  |  |  |
|         | OR                                                                                                                                                                                                                     | 1.6 |  |  |  |  |  |
| b       | Let A(t) be an n x n matrix that is continuous on closed and bounded interval I.<br>Then prove that there exists a solution to the initial value of problem of $x' = Ax$ on I, also prove that the solution is unique. | 16  |  |  |  |  |  |
| 6.      |                                                                                                                                                                                                                        | 0   |  |  |  |  |  |
| a(i)    | Prove that the error $x(t) - x_n(t)$ estimates                                                                                                                                                                         |     |  |  |  |  |  |
|         | $ x(t) - x_n(t)  \le \frac{L(Kh)^{n+1}}{K(n+1)} e^{Kh}; \ t \in [t_0, t_0 + h]$                                                                                                                                        |     |  |  |  |  |  |
| (ii)    | Let $a < 0$ and $0 < b <  a $ . Then prove that any solution x of                                                                                                                                                      | 8   |  |  |  |  |  |
|         | $x'(t) = ax(t) + bx(t-r), \ 0 \le t_0 \le t < \infty$ tends to zero as $t \to \infty$                                                                                                                                  |     |  |  |  |  |  |
|         | OR                                                                                                                                                                                                                     |     |  |  |  |  |  |

16