

GIET UNIVERSITY, GUNUPUR – 765022

					RN19MSC036
	Roll No:				
Total Number			R-18 R FXAMINA	TIONS, NOV/DEC	M. Sc
			t code: AE-30	7	2017 20
Time: 3 Hours	8	igures in the righ			Max Marks: 80
			-	i marcate marks.	
		SE	CTION A		
Q.1 An	swer any four of the follow	/ing:		[4 X4 =16]	
a L	et X be a random variabl	e with probabil	ity density		
fu	Inction $fx = \begin{cases} \frac{1}{3}e^{-\frac{x}{3}} & x > 0\\ 0 & \text{Otherwise} \end{cases}$				
	ind (i) P ($X > 3$) (ii) Mom	ent generating	function of X	7	
b I	If X is a normal variate w	ith mean 2 and			of 4
	$Y = \frac{1}{2}x - 1$. Also find			T Z tot t	
•	If the moments of $E\left(X^r\right) = 0.6, r = 1, 2, 3$	f a random Eind $P(X)$			by 4
	A fair die is tossed 8 tim	-			d 6 4
t	wice and the other number Find the probability dis	ers exactly once	e.	-	
C	children, assuming equal				' +
fI	From the following data, X_1	obtain $R_{1.23}$, R_2 2 5	.13 7	11	4
	X_1 Z_2 Z_2		10	11	
	X_3 1	3	6	10	
		Or			
	swer all questions from the				[2 x 8 =16]
	A random sample of size		•		with 2
	parameters λ and k . Show			nple also follows a	
	Gamma distribution with	-			
	Suppose that the reaction				7 a 2
	lognormal distribution wi (i) Find the probability th	-			
	(ii) Find the reaction time				
	A box contains 2^n tick		•		er 2
	r(r=0,1,2,,n).Two		1		
	expectation of the sum of				

d Find the standard error of estimate of *Y* on *X* and of *X* on *Y* from the following data:

GIET UNIVERSITY, GUNUPUR – 765022

							KN19M
	X	1	2 5	3	4	5	
	Y	2	5	9	4 13	14	
e	If X and Y are in	dependent ra	indom variable	es with p.d.f's	$f_1(x) = \begin{cases} 2e^{-1} \\ 0 \end{cases}$	$x^{-2x}, x \ge 0$ x < 0 and	2
	$f_2(y) = \begin{cases} 3e^{-3z} \\ 0 \end{cases},$	$x, y \ge 0$ y < 0 find	the density fur	nction of their	sum U=X+Y		
f	Find the distribution	ution function	of the RV Y=	=g (X), in tern	ns of the		2
	distribution fund	ction of X, if	it is given that	$g(x) = \begin{cases} x - c \\ 0 \\ x + c \end{cases}$	for x > c $for 1xl \le c$ for x < -c		
g	Is it possible (i) $r_{23} = 0.8$,	-	-	-			2

h The following zero-order, correlation coefficients are given (i) $r_{12} = 0.98, r_{13} = 0.44, r_{23} = 0.54$ calculate multiple correlation coefficient treating first variable as dependent and second and third variables are independent.

SECTION-B

3. Answer all Questions:

The following is a printout produced from part of a study of the relationship а between family income and choice of shopping mall

т	1	2	2	4.11	
Income	1	2	3	All	
1	60	25	14	99	
	65.74	25.20	8.09	99.00	
2	66	32	9	107	
	71.05	27.24	8.71	107.00	
3	127	40	8	175	
	116.21	44.55	14.24	175.00	
All	253	97	31	381	
	253.00	97.00	31.00	381.00	

Shopping Mall

CHI-SQUARE = 10.292 with d.f = 4

(a) For $\alpha = 0.05$, what conclusion would you come to know?

(b) Show how the result of 44.55 was calculated for 'shopping mall=2, income=3"

What contribution to the overall chi-square value do the 'shopping mall=2, income=3" make?

RN19MSC036

[16 x4 =64]

2

GIET UNIVERSITY, GUNUPUR – 765022

RN19MSC036

- b. Batting 0.400: 13 times from 1900-1941, never since. Find the parameters of the data distribution so that $\mu = 0.260$ and $\sigma = 0.04$. With these values of α and β , what is the probability a batting average exceeds 0.400?
- 4.
 - ^a The Joint pdf of (X, Y) is given by f(x, y) = 24xy; x > 0, y > 0, $x + y \le 1$, and f(x, y) = 0, elsewhere, find the conditional mean and variance of Y, given X

Or

b Obtain the equations of the regression lines from the following data, using the method of least squares. Hence find the coefficient of correlation between X and Y. Also estimate the value of (i) Y, when X = 38 and (ii) X, when Y = 18.

<u> </u>	22		29	30	21	21	24	25
Λ		20	29	- 50	51	51	54	- 55
Y	20		21	29	27	24	27	31
Put $U = X - 29$ and $V = Y - 27$								

5.

a The current I and the resistance R in a circuit are independent continuous RVs with the following density functions

$$f_i(i) = \begin{cases} 2i, 0 \le i \le 1\\ 0, elsewhere \end{cases} \quad f_r(r) = \begin{cases} \frac{r^2}{9}, 0 \le r \le 3\\ 0 \text{ elsewhare} \end{cases}$$

Find the pdf of the voltage F in the circuit where F-I

Find the pdf of the voltage E in the circuit, where E=IR

Or

b. According to the Maxwell-Boltzmann law of theoretical physics, the pdf of V, the Velocity of a gas molecule is given by

$$f_{v}(v) = \begin{cases} kv^{2} \ e^{-av^{2}}, v > 0\\ 0, \ elsewhere \end{cases}$$

where a is a constant depending on its mass and the absolute temperature and k is an appropriate constant. Show that the kinetic energy $Y = \frac{1}{2}mV^2$ is a random_variable having Gamma distribution.

6.

a A salesman in a departmental store claims that at most 60 percent of the shoppers entering the store leaves without making a purchase. A random sample of 50 shoppers showed that 35 of them left without making a purchase. Are these sample results consistent with the claim of the salesman? Use a level of significance of 0.05.

Or

b A cubical die is thrown 9000 times and a throw of 3 or 4 is observed 3240 times. Show that the die cannot be regarded as an unbiased one, and find the extreme limits between which the probability of a throw of 3 or 4 lies.