

RD19MSC012

	Roll No:									
Total N	Sumber of Pages: 2				AR-	19		1	M.Sc	
M.Sc 1 ST SEMESTER REGULAR EXAMINATIONS, NOV/DEC 2019-20										
MTPC102-TOPOLOGY										
Tir	ne: 3 Hours	Max Ma							rks: 80	
The figures in the right hand margin indicate marks.										
SECTION A										
Q.1 Answer any four of the following: [4 X4 =16]										
a Show that the union of two topologies need not be a topology.									4marks	
b Prove that a set E is closed if and only if it's complement E^C is open									4marks	
c Prove that there does not exist a continuous, bijective function $f: [0, 1) \rightarrow R$									4marks	
d Every closed subset of a compact space is compact.									4marks	
e A topological space X is a T_0 -space then the closures of distinct points are distinct.									4marks	
f XXY is connected if and only if X and Y are connected									4marks	
OR										
2. Answer all questions from the following [2 x 8 = 16]										
a Def	ine topology and ope	n sets	of the	topolo	gical s _l	pace. (Give ar	n example for each	2 marks	
of t	hem									
b Def	Define derived set and closed set. Give an example for each of them.								2 marks	
c Giv	Give an example of a continuous function which maps a dense in itself onto a non								2 marks	
den	se in itself set.									
d Def	Define homomorphism, compact spaces.								2 marks	
e Def	Define T ₂ -Spaces and Sequences.								2 marks	
f Exp	f Explain Axioms of Countability.								2 marks	
g Def	fine Metric Products.								2 marks	
h Me	tric Products (D) is p	erfect.							2 marks	

RD19MSC012

SECTION-B

3. Answer all Questions: [16 x4 = 64]16 marks a For any set A in a topological space (X, z), $(A)^- = A \cup d(A)$. where $(A)^-$ is closure of A and d(A) is deriverd set of A. 16 marks b Prove that F^* is a topology for X^* . 4. If E is a subset of a subspace (X^*, F^*) of a topological space (X, F) then 16 marks E is F^* - compact if and only if it is F- compact. OR Space that is T_1 and limit point compact is countably compact. 16 marks b 5. Let X be a uncountable set, and let infinity be a fixed point of X. Let F be the 16 marks family of subsets G such that either (i) infinity does not belongs to G, or (ii) infinity does belongs to G and CG is finite. Fort's space (X, F) is a compact, non first axiom, Hausdorff topological space. b In a second axiom space, every collection of nonempty disjoint, open sets is 16 marks countable. 6. 16 marks Prove that H X H is isometric to H. a OR Prove that D is homeomorphic to K. 16 marks b