

GIET UNIVERSITY, GUNUPUR – 765022

40

							RD19MSC0	
	Roll No:							
,				A.D.	10		Mag	
Total Number of Pages: 2 AR-19 M.SC M.Sc 1 ST SEMESTER REGULAR EXAMINATIONS, NOV/DEC 2019-20 MTPC105								
NUMERICAL ANALYSIS AND ITS APPLICATIONS								
Time: 3 Hours Max Marks: 80 The figures in the right hand margin indicate marks.								
	The f	igures in th				ındıcat	e marks.	
Q.1 Answer any four of the following: [4 Xe						[4 X4 =16]		
a	Determine the step size h that can be used in the tabulation of $f(x) = \sin x$ in that interval							
	[1, 3] so that linear interpolation will be correct to four decimal places after rounding off.							
b	Explain briefly about quadratic interpolation							
c	Explain briefly about iterated interpolation							
d	Explain briefly about Lagrange bivariate interpolating polynomial.							
e		The following data for a function $f(x, y)$ is given: Find $f(0.25, 0.75)$ using linear						
	interpolation.							
	y\x		0	1				
	0		1	1.	4142	14		
	1		1.73205	51	2			
f	What is the use of Trapezo	idal metho	d and ex	_	s forn	nula		
OR								
2. <i>P</i>	Answer all questions from the following [2 x 8 = 16] Explain about interpolating polynomial							
b	Write about Newton divided difference interpolation							
c	State Weierstrass approximation and coordinate function							
d	Obtain the rational approximation of the form $\frac{a_0 + a_1 x}{b_0 + b_1 x + b_2 x^2}$ to e^x .							
e	Explain about linear and quadratic interpolation							
f	Find the approximation value to							
	$\int_0^1 \frac{\sin x}{x} dx$ using mid point rule and two point open type rule							
g	Evaluate the integral $\int_{y=1}^{1.5} \int_{x=1}^{2} \frac{dxdy}{x+y}$ using the Simpsons rule with h=0.5 and y= 0.5							
	compare with exact solut							
h	Define difference equation	on and give		-				
2 4	11.0		SI	ECTIO	N-B		F1.6 A 647	
3. P	Answer all Questions:						[16 x4 = 64]	
a	Calculate the nth divided difference of $1/x$, based on the points xo, x1, x2, xn. OR							
b 4.	Obtain the least squares polynomial approximation of degree one and two for $f(x) = x^{\frac{1}{2}}$ on [0, 1]							
a	Find the quadrature formula $\int_0^1 \frac{dx}{\sqrt{x(1-x)}} = \alpha_1 f(0) + \alpha_2 f(\frac{1}{2}) + \alpha_3 f(1)$ which is exact for							
	polynomials of highest possible degree. Then use the formula on							
	$\int_0^1 \frac{dx}{\sqrt{x-x^3}}$ and compare with the exact value.							

RD19MSC040

OR

b Evaluate the integral $\int_0^1 \frac{dx}{1+x} \text{ using composite trapezoidal rule, composite Simpsons rule with 2,4 and 8}$ equal subintervals

5. a Evaluate the integral $\int_{1}^{2} \int_{1}^{2} \frac{dxdy}{x+y}$ using the trapezoidal rule with h=k=0.5 and h=k=0.25. Improve the estimate using Romberg integration

b Find the solution of the initial value problem $\frac{du}{dt} = -2tu^2$, u(0) = 1Using 4th order R-K method.

6. a Solve the initial value problem $u^1 = -2tu^2$, u(0)=1 with h=0.2 on the interval [0, 0.4] using the backward Euler method.

OR

Given the initial value problem $u^1 = t^2 + u^2$, u(0) = 0 determine the first three non zero. Terms in the Taylors series for u(t) and hence obtain the value for u(1). Also determine t when the error in u(t) obtained from the first two non zero terms is to be less than 10^{-6} after rounding off.