

3.

4.

	GIET UNIVERSITY, GUNUPUR – 765022		
	peraument our states per	RD19MSC004	
	Roll No:		
	Total Number of Pages: 2 AR-19 M. Sc 1 ST SEMESTER REGULAR EXAMINATIONS, NOV/DEC 2019-20	M. Sc	
	PHPC101-MATHEMATICAL METHODS IN PHYSICS Time: 3 Hours The figures in the right hand margin indicate marks. Max M	arks: 80	
	SECTION A		
1 A	Answer any four of the following:	[4 x 4 =16]	
a	Expand $f(z) = \frac{1}{(z-1)(z-2)}$ in Laurent series valid for $1 < z < 2$.	4	
b	Find the residues of $f(z) = \frac{1}{(z^2+1)^3}$ at $z=i$.	4	
c	Prove that two right or left cosets of a subgroup in a given group are either equal or	4	
d	else have no elements in common. Define the outer product for tensors and show that transformation is valid for outer	4	
e	product. Prove the Linearity Theorem for Fourier transform.	4	
f	Show that $J_{\frac{1}{2}}(x) = \sqrt{\frac{2}{\pi x}} \sin x$.	4	
	$\int \frac{1}{2}(x) = \sqrt{\pi x} Str(x).$ OR		
2	Answer all questions from the following	-16]	
۷. a	Answer all questions from the following [2 x 8 = 1 s z^{-1} an analytic function of complex variable?	2	
b	Define Laplace transform.	2	
c	What is the orthogonal property of Legendre's polynomial?	2	
d			
e	Discuss dummy and real indices of tensors with example.	2	
f	Find the residue of $f(z) = \frac{z^3 - z^2 + 1}{z^3}$ at infinity.	2	
g	Prove that a group of order three is always cyclic.	2	
h	Define the axioms of group.	2	
	SECTION-B		
		6 x 4 = 64	
a	i. Discuss about contravariant and covariant tensors.	6	
	ii. A covariant tensor has components xy, 2y-x², xz in the rectangular coordinate system. Find its covariant components in spherical co-ordinate system.	10	
	OR		
b	Discuss about symmetric and anti-symmetric tensors. Check the preservation of symmetry property under co-ordinate system transformation.	16	
a	i. Use Cauchy's integral formula to evaluate $\int_C \frac{\pi}{(z^3-3z+2)} dz$ where C	6	
	is the circle $ z-2 =1/2$ with proper diagram. Evaluate by method of complex variable with suitable diagram, the intergral $\int_{-\infty}^{\infty} \frac{x^2}{(1+x^2)^3} dx$.	10	
	$J-\infty (1+\chi^2)^3$		

GIET UNIVERSITY, GUNUPUR – 765022

		275	RD19MSC004
		OR	
b		hod of complex variables, suitable diagram and explanation, to evaluate $1 \int_0^{2\pi} \frac{\sin^2 \theta}{5 - 4 \cos \theta} d\theta.$	16
	me miegra	$\int_{0}^{1} \int_{0}^{1} \frac{1}{5-4 \cos \theta} d\theta$	
5.			
a	i.	Find the Fourier transform of $e^{- t }$.	8
	ii.	Find the Laplace transform of Sin^2t and Cos^2t .	8
		OR	
b	Derive any following:	two recurrence formulae of the Legendre polynomial $P_n(\boldsymbol{x})$ from the	16
	i.	$n P_n(x) = (2n-1) x P_{n-1} - (n-1) P_{n-1}$	
		$n P_n(x) = xP'_n(x) - P'_{n-1}(x)$	
	iii.	$P'_{n+1}(x) - P'_{n-1}(x) = (2n+1) P_n(x)$	
6.	_		_
a	i.	State and prove Cayley's theorem.	8
	ii.	Discuss in detail the representations of group.	8
		OR	
b	i.	Show that three cube roots of unity form an Abelian group under multiplication.	6
	ii.	Write notes on SU(2) and Group multiplication table with examples.	10