

GIET UNIVERSITY, GUNUPUR – 765022

RD19MSC016 Roll No: Total Number of Pages: 2 AR-19 M.Sc M.Sc 1ST SEMESTER REGULAR EXAMINATIONS, NOV/DEC 2019-20 CHPC102-INORGANIC CHEMISTRY - I Time: 3 Hours Max Marks: 80 The figures in the right hand margin indicate marks. SECTION-A Q.1. Answer *Any Four* of the following: $[4 \times 4 = 16]$ What are the factors favoring the formation of covalent bond? [4.0]a. b. Discuss the shapes of the XeO₃, BrF₃, PCl₅, and SF₆ molecules. [4.0] Discuss the short comings of valence bond theory for co-ordination compounds. c. [4.0]Discuss the Tanabe-Sugano energy diagram for d² configuration. d. [4.0]What are the Hund's rules for energy ordering of the terms of a configuration? [4.0]e. f. Explain the term artificial radioactivity. Give the nuclear reactions induced by [4.0] neutron, proton, and α -particle. OR Q.2. Answer *All* questions from the following $[8 \times 2 = 16]$ Explain why chlorine atom shows the covalency of 1, 3, 5, and 7 in spite of the [2.0] a. presence of one unpaired electron. What is the expected geometry for the following types of hybridization: sp, sp², b. sp³, dsp², dsp³, and d²sp³ hybridizations? State the factors affecting the value of crystal field splitting. [2.0]c. d. Discuss the color and magnetic properties of the co-ordination compounds. [2.0]Differentiate between the terms, states, and microstates. [2.0]e. f. Explain the term Charge transfer spectra with a suitable example. [2.0]Count rate meter is used to measure the initial activity of 4750 counts/min and [2.0]g. five minutes later it shows 2700 counts/min. Find the decay constant and halflife of the sample. h. Explain the differences between chemical and nuclear reactions. [2.0]SECTION-B $[4 \times 16 = 64]$ Answer *All* Questions: Q.3. i. State a qualitative account of valence bond theory of formation of hydrogen [8.0] molecule. ii. Discuss the necessary conditions to be fulfilled by the atomic orbitals to [4.0]participate in the formation of molecular orbitals. iii. Write a note on the valence shell electron pain repulsion theory. [4.0]

GIET UNIVERSITY, GUNUPUR – 765022

	RD19	MSC016
b.	i. Describe the important features of molecular orbital theory.	[4.0]
	ii. Write down the comparison between bonding and antibonding molecular orbitals.	[7.0]
	iii.Draw the molecular orbital energy level diagram of F ₂ and NO.	[5.0]
Q.4		
a.	i. Discuss the important differences between valence bond theory and crystal field theory.	[6.0]
	ii. Discuss the splitting of d-orbitals in the case of octahedral, tetrahedral, and square planar complexes.	[7.0]
	iii.Discuss the difference between inner orbital and outer orbital complexes with suitable examples.	[3.0]
	OR	
b.	i. Describe the bonding of $[Fe(H_2O)_6]^{3+}$ and $[Fe(CN)_6]^{3-}$ complexes based on valence bond theory and crystal field theory.	[8.0]
	ii. Define crystal field stabilization energy and calculate its value in d ⁵ low spin and high spin octahedral systems.	[4.0]
	iii.Discuss the sigma and pi metal-ligand bonding in transition metal complexes with reference to tetrahedral systems.	[4.0]
Q.5		
a.	i. Derive the possible terms for a p ² configuration.	[6.0]
	ii. Compare between the ferromagnetism, ferrimagnetism, and antiferromagnetism.	[6.0]
	iii.Discuss the L–S coupling for a p ² configuration with schematic diagrams.	[4.0]
	OR	
b.	i. Draw the Orgel diagram for both d ⁵ weak and strong field complexes and discuss its important features.	[7.0]
	ii. Construct a correlation diagram for a d ² configuration under octahedral crystal field and discuss its important features.	[4.0]
	iii.Define the term magnetic susceptibility and discuss the method to measure it.	[5.0]
Q.6	i.	
a.	i. Write notes on health hazards of radiations and carbon dating techniques.	[6.0]
	ii. Discuss the nuclear fission and nuclear fusion with suitable examples.	[6.0]
	iii.Calculate the binding energy per nucleon in Joules unit for helium atom.	[4.0]
	OR	
b.	i. Derive the expression of decay constant.	[4.0]
	ii. Write down the uses of radio isotopes for dating, medicine agriculture, and industry.	[6.0]
	iii. Compare the properties of α , β , and γ rays.	[6.0]