

GIET UNIVERSITY, GUNUPUR - 765022

RD19MSC022

Roll No:			
----------	--	--	--

Total Number of Pages: 2

AR-19

M.Sc

M. Sc 1 $^{\mbox{\scriptsize ST}}$ SEMESTER REGULAR EXAMINATIONS, NOV/DEC 2019-20 MTPC103 : ALGEBRA - I

Time: 3 Hours

Max Marks: 80

The figures in the right hand margin indicate marks.

SECTION A

Answer any FOUR of the following:

 $[4 \times 4 = 16]$

- 1. a. Show that N(a) is a subgroup of G
 - b. If $O(G) = p^2$, where p is prime number, then prove that G is abelian.
 - c. If p is prime number of the form 4n + 1, then prove that $p = a^2 + b^2$ for some integers a and b.
 - d. Let R be an Euclidean ring. Suppose that for $a, b, c \in R$, a|bc|but [a,b] = 1, then prove that a|c.
 - e. Show that L[S] is a subspace of V.
 - f. If $f(x) \in F[x]$ is irreducible, then prove that
 - (i) If the characteristic of F is 0, f(x) has no multiple roots.
 - (ii) If the characteristic of F is $p \neq 0$, f(x) has a multiple root only if it is of the form $f(x) = g(x^p)$.

(OR)

Answer all questions from the following.

 $[2 \times 8 = 16]$

- 2.a. Let $\sigma = (1 \ 5 \ 3) (1 \ 2), \ \tau = (1 \ 6 \ 7 \ 9)$, then compute $\sigma \tau \sigma^{-1}$.
 - b. Define conjugate of an element in G.
 - c. State second part of Sylow's theorem.
 - d. Define Euclidean ring.
 - e. Define linearly dependent vectors and linearly independent vectors.
 - f. Prove that $x^2 + 1$ is irreducible over R.
 - g. Define (i) algebraic extension (ii) algebraic number.
 - h. What is the degree of $x^5 1$ over Q?

$$SECTION - B [4 x 16 = 64]$$

3. a. State and prove Cauchy's theorem.

(OR)

- b. (i). State and prove Cayley's Theorem.
 - (ii) Show that conjugacy is an equivalence relation on G.

GIET UNIVERSITY, GUNUPUR – 765022

RD19MSC022

4.a. If $p^{\alpha}|O(G)$ and $p^{\alpha+1} \nmid O(G)$, then G has a subgroup of order p^{α} .

(OR)

- b. Prove that J[i] is a Euclidean ring.
- 5. a.(i). State and prove Eisenstein Criterion.
 - (ii) Prove that for any prime p, $x^{p-1} + x^{p-2} + \cdots + x + 1$ is irreducible over rational.

(OR)

- b. If V is finite dimensional and if W is a subspace of V, then prove that W is finite dimensional, $\dim W \leq \dim V$ and $\dim \left(\frac{V}{W}\right) = \dim V \dim W$
- 6.a. If L is a finite extension of K and if K is a finite extension of F, then L is a finite extension of F. Moreover, [L:F] = [L:K][K:F]

(OR)

- b. (i). For any f(x), g(x) ∈ F[x] and any ∝ ∈ F, then prove that (1) [f(x) + g(x)]' = f'(x) + g'(x)
 (2) [∝ f(x)]' = ∝ f'(x) and (3) [f(x)g(x)]' = f'(x)g(x) + f(x)g'(x).
 - (ii) If F is a field of characteristic $p \neq 0$, then the polynomial $x^{p^n} x \in F[x]$, for $n \geq 1$ has distinct roots.